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Abstract

The presented thesis is an structured exposition of the Weil conjectures and
their application to the theory of elliptic curves overQ. The first part of the work
is a foundational component focused on the cohomological apparatus necessary
for the proofs of the Weil conjectures, and the second part is a novel approach
to a problem concerning the Selmer groups, an equivalence class in the first
cohomology of the curve, as the arithmetic application of the tools.

The first part is a very brief exposition of the homological machinary used
in modern algebraic geometry following the school of Grothendieck, from the
framework of categories and topos into abstract theory of schemes and /l/-
adic cohomology. These tools are then used for developing a cohomological
interpretation of the zeta functions and L-series, through a derivation of the
Lefschetz fixed point formula and an outlined proof of the Weil conjectures,
besides the Riemann Hypothesis.

The second part is the application of these tools for arithmetic of elliptic
curves over rational numbers, specifically for those with an integral 2-torsion
point. We compute the exact selmer groups with tools borrowed from /l/-adic
cohomology and local reductions to compute the Selmer ranks. This result
contributes to open problems regarding the growth of Mordell-Weil ranks and
further open problems regarding the Tate-Shafarevich groups.

An outline of the differences and novelties of this work are provided in the
fourth chapter, by avoiding use of quadratic twists in the computation of the
Selmer ranks, and contributes insights to the structure of Selmer groups in
exceptional families.

Keywords: Algebraic geometry, Elliptic curves, Selmer groups, Galois cohomology,
finite field arithmetic
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Реферат

Бұл дипломдық жұмыс Вейль болжамдарын және олардың Q санының
өрiстерiндегi эллиптикалық қисықтар теориясына қолданылуын құрылым-
дық түрде баяндайды. Жұмыстың бiрiншi бөлiгiнде Вейль болжамдары-
ның дәлелдеулерiне қажеттi когомологиялық аппараттың iргелi негiздерi
қарастырылады, ал екiншi бөлiгiнде бiрiншi когомологиядағы эквивалент-
тiк кластар – Сельмер топтары бойынша арифметикалық есеп жүргiзiледi.

Бiрiншi бөлiм – Гротендик мектебiнiң бағытын ұстана отырып, замана-
уи алгебралық геометрияда қолданылатын гомологиялық әдiстердiң қы-
сқаша экспозициясы. Категориялар мен топостар теориясынан бастап схе-
малар мен l-аддик когомологиясына дейiнгi ұғымдар қарастырылады. Бұл
аппарат зета-функциялар мен L-қатарларын когомологиялық интерпре-
тациялау үшiн қолданылады. Сонымен қатар, Лефшецтiң тұрақты нүк-
те формуласы туындалып, Вейль болжамдарының (Риман гипотезасынан
басқа) дәлелдеулерi келтiрiледi.

Жұмыстың екiншi бөлiгiнде рационал сандар өрiсiндегi бүтiн 2-торсионды
нүктесi бар эллиптикалық қисықтарға арналған арифметикалық есептер
жүргiзiледi. l-аддик когомология мен жергiлiктi редукциялар әдiстерi арқы-
лы Сельмер топтарының нақты өлшемдерi есептеледi. Бұл нәтиже Мор-
дэлл–Вейль рангтерiнiң өсуi және Тейт–Шафаревич топтарының шекте-
усiздiгi мәселелерi бойынша ашық сұрақтарға үлес қосады.

Жұмыстың жаңашылдығы төртiншi бөлiмде көрсетiлген, мұнда Сель-
мер рангтерiн есептеуде квадратикалық бұраулар қолданылмайды. Бұл
тәсiл ерекше эллиптикалық қисықтар отбасындағы Сельмер топтарының
құрылымы жөнiнде жаңа түсiнiктер бередi.

Түйiн сөздер: алгебралық геометрия, эллиптикалық қисықтар, Сельмер
топтары, Галуа когомологиясы, шектеулi өрiстер арифметикасы
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Реферат

Данная выпускная работа представляет собой структурированное изложе-
ние гипотез Вейля и их приложения к теории эллиптических кривых над
полем рациональных чисел Q. Первая часть посвящена построению кого-
мологического аппарата, необходимого для доказательства гипотез Вейля,
в то время как вторая часть содержит оригинальный подход к проблеме,
связанной с группами Сельмера, которые являются классами эквивалент-
ности в первой когомологии кривой.

Первая часть представляет собой краткое изложение гомологических
методов современной алгебраической геометрии, развивавшейся в рамках
школы Гротендика — от категорий и топосов к абстрактной теории схем и l-
адической когомологии. Этот аппарат используется для когомологической
интерпретации дзета-функций и L-рядов, включая вывод формулы Леф-
шеца о неподвижной точке и схематичное доказательство гипотез Вейля
(за исключением гипотезы Римана).

Вторая часть применяет эти методы к арифметике эллиптических кри-
вых над Q, в частности для семейства с целой точкой порядка 2. Посред-
ством инструментов l-адической когомологии и локальных редукций вы-
числяются размеры групп Сельмера. Полученные результаты вносят вклад
в открытые вопросы о возможном росте рангов группы Морделла–Вейля
и в проблему структуры группы Тейта–Шафаревича.

Отличия и новизна данной работы изложены в четвёртой главе, где вы-
числения Сельмер-рангов проводятся без применения квадратичных тви-
стов. Это позволяет получить новые представления о структуре групп Сель-
мера в исключительных семействах эллиптических кривых.

Ключевые слова: алгебраическая геометрия, эллиптические кривые, груп-
пы Сельмера, когомология Галуа, арифметика конечных полей
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Introduction

The presented work is an aim to lay the foundations of modern algebraic geome-
try, and show an application of this given in the fourth chapter. The first part of
this work, the first three chapters, are aimed for a reader unfamiliar with modern
algebraic geometry. Basics of ideal theory are assumed, and from this we build
up the foundation of modern reading of algebraic geometry, that of categorical
interpretations of Alexander Grothendieck and his school, to prove the Weil con-
jectures besides the Riemann Hypothesis. We go through the basics of category
theory, homological algebra, scheme theory and cohomology theory to approach
this goal, and familiarize the reader with the state of the art algebraic geometry, as
is needed for the latter part of this work.

The second part is a manuscript partially sent for publication showcasing
what can be done with the explained tools. We work with the arithmetical and
geometrical techniques developed within the first three chapters to investigate the
arithmetical properties of certain families of elliptic curves, which an open field
of many investigations, beginning from the works of Artin on zeta functions and
made quite famous by the works of Wiles on the Fermat’s Last Theorem. Our work
builds upon the existing literature on this topic to shed light on certain objects made
to study elliptic curves over rational numbers, and includes a short survey of open
problems to be addressed in the future of this work.

The connection of the two parts grows deeper than an application of the
techniques through open conjectures such as that of Birch Swinnerton-Dyer and
Beilinson-Bloch-Kato. The center of this algebraic and analytic connections are
the L-functions and zeta functions associated to varieties, with which the Weil
conjectures are concerned; it would be a disservice to the reader thus not to include
the ideas of these objects beforehand to get a sense of urgency these problems hold
in the field of arithmetic geometry.
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The idea of zeta functions stems from the solutions of a set of algebraic equa-
tions in a finite field and the problem of counting such solutions. This problem is
due Artin. He began the study of extensions in function fields and their arithmetical
properties, i.e, the number of rational solutions to intersection of curves. This lead
to the study of zeta function associated to the curve defining the extension under
consideration. But to see why zeta functions went under consideration, one must
go further back.

Dedekind studied number fields which were rationals with finite number of
algebraic extensions. The reason for this is that the divisibility of solutions to a
polynomial by primes is governed by the behavior of prime numbers under rationals
extended with the solution of the polynomial. It was observed that the number
vastly differs for various extensions, and many extensions lose basic properties
of natural numbers such as unique factorization. What was observed was that
the residue of zeta function associated to the field, the function mimicking the
Euler product formula over prime numbers used in Riemann zeta function, was
directly related to the behavior of the number field associated to the extension.
This was the first sign that there had to be a much deeper connection between
algebraic properties of a field and the analytic properties of the zeta function. The
work of Artin was thus the extension of class field theory to the case of function
fields, since for the case of function fields the classical geometric and algebraic
topological tools were available.

A factor that necessitates this text over other pieces of literature on this topic
is the emphasis on the arithmetic aspects of algebraic geometry; many existing
pieces of literature do not take so much time as to even introduce etale or l-adic
cohomology theories only to focus on purely geometrical problems such as that of
classification of surfaces. Such problems despite their priority for a geometer are
of little interest for a text addressing arithmetic as its main issue, and thus this text
set its goal of the exposition as the Weil conjectures; this is more inline with much
of the developments of algebraic geometry, and so we return to it for this text.

We introduce the Weil conjectures and zeta functions in the first chapter. We
set the goal, which is to construct a Weil cohomology theory suitable for study
of finite field arithmetic. The chapter is aimed at demonstrating the nature of a
cohomology theory and what makes it important for us, and for a geometrical
investigation.
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In the second chapter all the needed tools are briefly introduced; many topics are
crammed into one chapter, as a fast track course to familiarize the reader with the
topic and then immediately introduce the l-adic cohomology theory; for brevity,
many of the auxiliary topics and long justifications, or highly abstract category
theoretic explanations have been omitted, to avoid making the chapter overly long
and making this primarily a textbook of algebraic geometry. Each section of the
second chapter therefore capsulated as much as a book of [EGA] or [SGA] series,
and thus many omissions were necessary. At the end of the chapter we are finished
with the introduction of the l-adic cohomology, and are ready to give a proof of
the conjectures.

The third chapter is straightforward. We give a proof of the Lefschetz fixed
point formula for the Frobenius endomorphism, from which the Weil conjectures
all follow. We do not have much to do in the chapter, so it is quite a brief end for
the first part of this text.

The fourth chapter constitutes the original contributions of this thesis. Making
use of the cohomological and categorical framework developed in the first part, we
shift focus to the arithmetic of elliptic curves defined over the rational numbers.
We recall basics of elliptic curves, such as the group structrue, the L-function and
auxiliary groups, the Selmer groups and Tate-Shafarevich groups, as the central
invariants in the study of rational points.

The goal of this chapter is the computation of the Selmer groups within a
narrow family of elliptic curves, namely those with a point of order 2 on the origin.
We pursue descent techniques informed by l-adic methods and localization of
cohomology classes, and implement a reduction strategy for this family of curves.
The algorithm is adopted from Goto [7], and is used to explicitly track growth of
Selmer ranks for this family.

This analysis not only shows the application of the cohomological methods
explained prior, but also lays the groundwork for future investigations into related
open problems, such as that of Birch Swinnerton-Dyer and Beilinson-Bloch-Kato.
In the body of the chapter, the divergence of methods from those of Klagsbrun and
Lemke-Oliver, who derived the same results from different methods, is discussed.
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Chapter 1

The Weil Conjectures

In this section, we introduce the Weil conjectures and the strategy taken to resolve
them. Firstly, we will need to introduce the zeta function of a variety. This section
follows works of [17] and [12]; the latter includes a through review of this topic.

1.1 Zeta Functions

In his 1846 paper, Riemann prove the the function

𝜁 (𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠

extends holomorphically to the entire complex plane, and formulated a hypothesis
regarding the distribution of zeros of this function. Since the zeta function admits
the prime decomposition

𝜁 (𝑠) =
∏
𝑝

1
1− 𝑝−𝑠

, its analytical properties encode arithmetical information regarding Z, including
the distribution of prime elements.

Following Riemann, Dedekind defines the zeta function of an arbitrary number
field 𝐾 as

𝜁𝐾 (𝑠) =
∏
P

1
1−𝑁 (P)−𝑠

where 𝑁 (P) denotes the norm of the prime ideal P. This function, again, encodes
the arithmetical information regarding the ring of integers in 𝐾 , and decomposes

11



into a product of the Riemann zeta function and a similar series.
Example: (Dedekind zeta function) Consider the number field Q(𝑖) with ring

of integers Z[𝑖]. As primes 𝑝 ≡ 1 (mod 4) are split into two prime ideals, and 2 is
is split as (1+ 𝑖) (1− 𝑖), the zeta function for this field becomes

𝜁𝐾 (𝑠) =
1

1−2−𝑠
·
∏
𝑝≡1

1
(1− 𝑝−𝑠)2

∏
𝑝≡3

1
(1− 𝑝−𝑠) (1+ 𝑝−𝑠)

we can rewrite this using the Dirichlet character 𝜒4 as

𝜁𝐾 (𝑠) = 𝜁 (𝑠) ·
∏
𝑝

1
1− 𝜒(𝑝)𝑝−𝑠 = 𝜁 (𝑠)𝐿 (𝜒4, 𝑠)

where 𝜒(1) = −1, 𝜒(−1) = 4, 𝜒(𝑛+4) = 𝜒(𝑛)

In 1921, Emil Artin develops the theory of zeta functions of quadratic function
fields with finite elements F𝑝 (𝑡) analog to dedekind zeta functions, and proves that
it again decomposes as a rational function of 𝑝−𝑠. He also formulates the analog
of Riemann hypothesis for this context.

Hasse later proves the Riemann hypothesis for the functional field of an elliptic
curve, using endomorphism ring of the curve and lifting from finite fields into
infinite fields. Following this, Weil proves the Riemann hypothesis for an arbitrary
curve over a finite field.

Weil introduces the geometric language in theory of zeta functions, re-founding
algebraic geometry in the way; he then develops the Weil conjectures regarding
properties of the zeta function. We now define and develop the basics of zeta
functions in context of finite type schemes.

Zeta function of a finite type scheme

Let 𝑋 be an scheme of finite type over Z. We define

𝜁 (𝑋, 𝑠) =
∏
P∈𝑋

1
1−𝑁 (P)−𝑠

where P refers to closed points in 𝑋 , and 𝑁 (P) is the cardinality of its residue
field.
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For an scheme defined as a disjoint union of subschemes {𝑋𝑖},

𝜁 (𝑋, 𝑠) =
∏

𝜁 (𝑋𝑖, 𝑠)

For a 𝑋 a F𝑞 scheme, we have

𝜁 (𝑋, 𝑠) = exp(
∞∑︁
𝑛=1

|𝑋 (F𝑛𝑞) |
𝑞−𝑛𝑠

𝑛
)

Example: for the affine line A1
𝑋

and projective line P1
𝑋

on 𝑋 , we have

𝜁 (A1
Fq
, 𝑠) = 1

1− 𝑞1−𝑠 , 𝜁 (A1
Fq
, 𝑠) = 1

(1− 𝑞1−𝑠) (1− 𝑞−𝑠)
.

We prove this by the observation

𝜁 (A1
Fq
, 𝑠) = exp(

∞∑︁
𝑛=1

|A1
F𝑛𝑞
|𝑞

−𝑛𝑠

𝑛
) = exp(

∞∑︁
𝑛=1

𝑞𝑛−𝑛𝑠

𝑛
) = exp(− log(1− 𝑞1−𝑠))

and
𝜁 (P1

F𝑞
, 𝑠) = 𝜁 (F𝑞, 𝑠)𝜁 (A1

F𝑞
, 𝑠) = 1

(1− 𝑞1−𝑠) (1− 𝑞−𝑠)
.

By rewriting the defined zeta function as a function of 𝑞−𝑠 rather than 𝑠, we get
the Hasse-Weil zeta function

𝑍 (𝑋,𝑞−𝑠) = 𝜁 (𝑋, 𝑠).

Example: We can rewrite the previous examples as

𝑍 (A1
F𝑞
, 𝑡) = 1

1− 𝑡

and
𝑍 (P1

F𝑞
, 𝑡) = 1

(1− 𝑡) (1− 𝑞𝑡) .

We can now state the first Weil conjecture:

13



1.2 Statement of the Conjectures

We can now state the Weil Conjectures. Here, we let 𝑋 denote an n-dimensional,
non-singular and projective variety of genus 𝑔.

Rationality: Rewriting 𝜁 (𝑋, 𝑠) as 𝑍 (𝑋,𝑇) for 𝑇 = 𝑞−𝑠, the zeta function is a
rational function in 𝑇 . Further, it can be factorized as

𝑍 (𝑋,𝑇) =
2𝑛∏
𝑖=0

𝑃𝑖 (𝑇) (−1)𝑖+1

where each 𝑃𝑖 (𝑇) is a polynomial with integer coefficients.
Functional equation: The zeta function has the following functional equation

𝑍 (𝑋,𝑞−𝑛𝑇−1) = 𝑞𝑛𝜒/2𝑇 𝜒𝑍 (𝑋,𝑇)

where 𝜒 = 2−2𝑔 is the Euler characteristic of the 𝑋 .
Betti Numbers: The degree of each polynomial 𝑃𝑖 (𝑛) is the i-th Betti number,

which is the dimensions of the i-th homology group.
Riemann Hypothesis: The zeros of 𝑃𝑖 (𝑇) for all 𝑖 have the absolute value 𝑞𝑖/2.
We note that all these properties are inferred from the Riemann zeta function;

its rationality follows the Euler product formulation, the functional equation fol-
lows Riemann’s work, the Betti numbers follows the Affine line having the same
topological structure as a point and the Riemann Hypothesis is trivial over finite
fields, though it remains open in the global case.

1.3 Weil Cohomology

The approach taken in this work for the proof of these conjectures is the use of
Weil cohomology meta-conjecture, titled such by Alexander Grothendieck. This
approach uses rather technical machinery from category theory, to which a chapter
is thus dedicated.

We now describe the concept of a Weil cohomology; note that since it is not
a definition and simply a description, more than one such object may exist. This
is indeed the case and we list the existing Weil cohomology theories at the end of
this section, along with reasoning for their usage or refusal here.

14



The Weil cohomology is a functor 𝐻 · : 𝑉 (𝑘)𝑜 → 𝑉𝑒𝑐∗
𝐾

of smooth projective
varieties over the field 𝑘 to graded vector spaces over field 𝐾 of characteristic zero.
Given 𝑋 of dimension 𝑛, it satisfies the following axioms:

1. For all 𝑋 ∈ 𝑉 (𝑘), 𝐻𝑖 (𝑋) is a finite dimensional vector space over 𝐾 , and if
𝑖 ∉ [0,2𝑛], 𝐻𝑖 (𝑋) = 0

2. 𝐻0(𝑆𝑝𝑒𝑐(𝑘)) = 𝐾 . The spectrum of a ring is defined in the chapter Schemes.

3. 𝑑𝑖𝑚(𝐻2(P1)) = 1; this space is denoted as 𝐾 (−1).

4. For varieties 𝑋,𝑌 , we have the additive formula

𝐻∗(𝑋 ⊔𝑌 ) = 𝐻∗(𝑋) ⊕𝐻∗(𝑌 )

5. For varieties 𝑋,𝑌 , we have the following map

𝓀𝑋,𝑌 : 𝐻∗(𝑋) ⊗𝐻∗(𝑌 ) → 𝐻∗(𝑋 ×𝑌 )

which is a natural isomorphism; further, it has graded commutativity such
that for 𝑥 ∈ 𝐻𝑖 (𝑋), 𝑦 ∈ 𝐻 𝑗 (𝑌 ), we have 𝑥 ⊗ 𝑦 = (−1)𝑖 𝑗 𝑦 ⊗ 𝑥 . We call this
isomorphism the Künneth map.

6. There exists a map 𝑇𝑟𝑋 inducing the isomorphism

𝑇𝑟𝑋 : 𝐻2𝑛(𝑋) → 𝐾 (−𝑛) := 𝐾 (−1)⊗𝑛

such that 𝑇𝑟𝑋×𝑌 = 𝑇𝑟𝑋 ⊗𝑇𝑟𝑌 which coupled with the Künneth formula gives
the sequence of morphisms

𝐻𝑖 (𝑋) ⊗𝐻2𝑛−𝑖 (𝑋) → 𝐻2𝑛(𝑋 × 𝑋) → 𝐻2𝑛(𝑋) → 𝐾 (−𝑛)

We call this the Poincarè duality.

7. For subvarieties of dimension 𝑛− 𝑖 modulo rational equivalence denoted as
𝐶𝐻𝑖 (𝑋), we have a homomorphism

𝑐𝑙𝑖𝑋 : 𝐶𝐻𝑖 (𝑋) → 𝐻2𝑖 (𝑋) (𝑖) := 𝐻𝑜𝑚(𝐾 (−𝑖), 𝐻2𝑖 (𝑋))
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which is compatible with the Künneth map as

𝓀𝑋×𝑌 (𝑐𝑙𝑖𝑋 (𝛼) ⊗ 𝑐𝑙
𝑗

𝑌
(𝛽)) = 𝑐𝑙𝑖+ 𝑗

𝑋×𝑌 (𝛼× 𝛽)

.

We can define the cup product as follows:

⌣: 𝐻𝑖 (𝑋) ×𝐻 𝑗 (𝑋) → 𝐻𝑖+ 𝑗 (𝑋)

𝑎∪ 𝑏 ∈ 𝐻𝑖+ 𝑗 (𝑋)

to turn the Weil cohomology groups into a ring.

1.4 Existing Weil Cohomology theories

In principle, there exist four different Weil cohomology theories by the axioms
given above. In this section we briefly discuss why only one is adopted for this
work.

Singular cohomology, also known as Betti cohomology from which Betti num-
bers take name, is the earliest such theory. It is defined over complex manifolds
and topological spaces, and provides a cohomology theory via the complex ana-
lytic space. This is the weakness of this theory as it fundamentally relies on the
complex analytic properties of the underlying space and has no extension for an
space defined over an arbitrary field, like the fields of positive characteristic needed
for the Weil conjectures; it is thus inapplicable here.

De Rham cohomology is next such theory; a generalization of singular coho-
mology, it uses Kähler differentials instead of complex ones, and thus for all fields
of charactaristic zero. Over the complex numbers it agrees with the singular co-
homology, a celebrated theorem of de Rham, but it still fails to work with positive
characteristics, at least to be compatible with the Weil’s conjectures. We need to
make use of certain finite field endomorphisms for the zeta functions, which we
cannot use in fields of characteristic zero.

Two Weil cohomologies remain, both valid for the Weil conjectures; crystalline
cohomology, and l-adic etale cohomology. In this work we focus on the latter,
developed mainly by Grothendieck, and used in the first complete proof of the
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Weil conjectures. This method uses sophisticated methods of category theory now
crucial for studying algebraic geometry, to successfully unify existing ideas of field
theory – Galois theory and the older ideal theory – within a geometric framework.
This arithmetic structure allows up to work within finite fields, and this is the main
difference with the prior theories, with respect to the Weil conjectures. The Galois
theoretic nature of this method also allows future interpretations and works within
the field of algebraic geometry.

Crystalline cohomology, which is a p-adic geometrical method developed
alongside etale cohomology, though took its final form much later, is a p-adic
counterpart to the de Rham cohomology. The earliest proof of the first Weil con-
jecture, the rationality of zeta function by Dwork, makes use of this method in its
infancy. A complete form of this theory and a full proof of the Weil conjectures by
this approach did not take form until much later works of Kedlaya however. This
approach is a more analytical approach to the problems, and is less aligned with
our algebraic disposition in this work. For this reason we have not pursued this
method here.
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Chapter 2

Categories and Homological
Algebra

In this chapter we shall introduce the basics of category theory. We will begin with
the definition of categories and basic operation within categories, then move on to
an important class of categories generalizing the notion of Abelian groups, namely
the Abelian categories. Finally, we will put forward basic tools from homological
algebra, namely the idea of sequences.

This chapter loosely follows the ideas of [8] books 1 and 3, [10], and [9] book
4.

2.1 Categories and Functors

Definition: A category 𝐶 consists of two parts; Objects, denoted 𝑂𝑏(𝐶), and
morphisms between them, 𝐻𝑜𝑚𝐶 (·, ·).

Take the category of sets for example. The objects are the sets, and for
𝐴, 𝐵 ∈ℰ𝓃𝓈, 𝐻𝑜𝑚(𝐴, 𝐵) consists of any mapping of one set to the other. Note
here that 𝑂𝑏(ℰ𝓃𝓈) is not a set, but a larger object, namely a class.

Other examples include 𝒜𝓃𝓃, the category of rings, where 𝐻𝑜𝑚(𝐴, 𝐵) con-
sists of ring homomorphisms. Similarly, we have category of 𝒜𝒷 of Abelian
groups, and ℳℴ𝒹(𝐴) of modules over a ring. The 𝐻𝑜𝑚(·, ·) operator in each
category is again morphisms retaining the category property.

For a category 𝐶, one can construct an opposite category 𝐶𝑜 by taking as
𝑂𝑏(𝐶𝑜) the objects in 𝐶 and as morphisms of two objects 𝐴, 𝐵, 𝐻𝑜𝑚𝐶𝑜 (𝐵, 𝐴) =
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𝐻𝑜𝑚𝐶 (𝐴, 𝐵). Similarly, a product category of 𝐶,𝐷 can be constructed with
objects and 𝐻𝑜𝑚 operator as Cartesian product of those of 𝐶,𝐷.

Definition: A morphism 𝑓 : 𝐵→ 𝐶 is called a monomorphism if for any pair
𝑒1, 𝑒2 ∈ 𝐻𝑜𝑚(𝐴, 𝐵), 𝑓 𝑒1 = 𝑓 𝑒2 implies 𝑒1 = 𝑒2. Similarly, an epimorphism is a
morphism 𝑓 : 𝐵→𝐶 such that for any pair 𝑒1, 𝑒2 ∈ 𝐻𝑜𝑚(𝐴, 𝐵), 𝑒1 𝑓 = 𝑒2 𝑓 implies
𝑒1 = 𝑒2.

In a category𝐶, one might find an initial object𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 such that𝐻𝑜𝑚(𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , ·)
consists of a unique morphism. Conversely, a final object is an object such that
𝐻𝑜𝑚(·,𝐶 𝑓 𝑖𝑛𝑎𝑙) consists of a unique morphism. An object which is both initial and
final is called a zero object.

For two objects of a category 𝐴, 𝐵, one can construct a product 𝐴×𝐵 such that
there exist unique maps 𝜋𝐴 : 𝐴× 𝐵→ 𝐴 and 𝜋𝐵 : 𝐴× 𝐵→ 𝐵, and for any object
𝑋 with morphisms 𝑓1 ∈ 𝐻𝑜𝑚(𝑋, 𝐴) and 𝑓2 ∈ 𝐻𝑜𝑚(𝑋, 𝐵), there exists a unique
morphism in 𝑓 ∈ 𝐻𝑜𝑚(𝑋, 𝐴×𝐵) where 𝜋𝐴 ◦ 𝑓 = 𝑓1 and 𝜋𝐵 ◦ 𝑓 = 𝑓2.

The previous definitions use only 𝐻𝑜𝑚 operator and therefore identify objects
only in relation to other objects in the category. This is an important tool in
category theory, as for example, since any two objects that satisfy the axioms
as initial, final or product, would by definition have unique morphisms into one
another, and hence are isomorphic. Such properties are called universal properties.

Example: For 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐵), take the universal object 𝐾 such that for any
𝑖 ∈ 𝐻𝑜𝑚(𝐾, 𝐴), the composition 𝑓 ◦ 𝑖 has the image zero, the zero morphism. This
object is called the Kernel of the morphism 𝑓 , denoted 𝐾𝑒𝑟 ( 𝑓 ). The opposite
object cokernel 𝑐𝑜𝐾𝑒𝑟 ( 𝑓 ) is the universal object 𝐶 such that for 𝑓 : 𝐴→ 𝐵 and
𝑗 : 𝐵→ 𝐶, 𝑗 ◦ 𝑓 is the zero morphism.

Definition: (Functors) A Functor 𝐹 between two categories 𝐶 and 𝐶′ is a
map between the objects 𝑂𝑏(𝐶) and 𝑂𝑏(𝐶′), and for a morphism 𝑓 ∈ 𝐻𝐶 (𝐴, 𝐵) a
functor has the map 𝐹 (𝑚) : 𝐹 (𝐴′) → 𝐹 (𝐵′) in𝐻𝑜𝑚𝐶′ (𝐴′, 𝐵′). Functors respect the
identity and compositions; a covariant functor maps compositions as 𝐹 ( 𝑓1 ◦ 𝑓2) =
𝐹 ( 𝑓1) ◦ 𝐹 ( 𝑓2), while a contravariant functor maps them as 𝐹 ( 𝑓1 ◦ 𝑓2) = 𝐹 ( 𝑓2) ◦
𝐹 ( 𝑓1).

Here, we remark that a contravariant functor is a covariant functor from the
opposite category.

Definition: (Representable Functor) A covariant functor 𝐹 : 𝐶 →ℰ𝓃𝓈 is
called representable is it is isomorphic to 𝐻𝑜𝑚(𝐴, ·) for some 𝐴 ∈ 𝐶. A con-
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travariant functor ℎ : 𝐶𝑂 →ℰ𝓃𝓈 (a presheaf) is called representable if it is natu-
rally isomorphic to 𝐻𝑜𝑚(·, 𝐴) for some 𝐴 ∈ 𝐶. For each object in a category we
can the representation ℎ(𝑥) such that ℎ(𝑥) (𝑦) = 𝐻𝑜𝑚(𝑦, 𝑥).

2.2 Limits and Colimits

Definition: (Limits and Colimits) For a category 𝐶 and a functor 𝐹 : 𝐽 → 𝐶,
where category 𝐽 consists of objects 𝑗𝑖, the limit is the universal object 𝐿 that can
be mapped to all objects 𝐹 ( 𝑗𝑖). Reversing the arrows 𝐹 : 𝐽 → 𝐶𝑜 gives us the
colimit.

While this definition does not seem intuitive, we try to motivate it by a set of
examples:

Example: (Product) Consider a category of two object and no morphisms
between the two. Mapping 𝐹 ( 𝑗1) = 𝐴 and 𝐹 ( 𝑗2) = 𝐵, the limit is the product
𝐴×𝐵. Note that for larger 𝐽, we get larger products which are still universal.

Example: (inverse limit) Take for category 𝐽 the category of infinite objects
𝑗𝑖, 𝑖 ∈ N0, such that 𝐻𝑜𝑚( 𝑗𝑚, 𝑗𝑛) is empty unless 𝑚 = 𝑛 + 1. The limit 𝐿 here is
called the inverse limit. For example, in category of rings, taking 𝐹 ( 𝑗𝑖) = Z/(𝑝𝑖)
we get the limit Z𝑝, the p-adic integers.

2.3 Additive and Abelian Categories

In what follows, we will introduce the axioms of additive and Abelian categories.
We will keep in mind as examples the category 𝐴𝑏 and ℳℴ𝒹𝐴, Abelian groups
and modules over the ring 𝐴.

Definition: An additive category is a category satisfying the following:

• (Ad.1): The set 𝐻𝑜𝑚(𝐴, 𝐵) has the structure of an Abelian group, such
that it distributes over addition, e.g, for 𝑓 , 𝑔, ℎ ∈ 𝐻𝑜𝑚(𝐴, 𝐵), 𝑓 (𝑎) +𝑔(𝑎) =
( 𝑓 +𝑔) (𝑎) and ℎ ◦ ( 𝑓 +𝑔) = ℎ ◦ 𝑓 + ℎ ◦𝑔.

• (Ad.2): The category has a zero object.

• (Ad.3): The product of any finite number of object exists within the same
category.
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We define Abelian categories using two additional axioms:

• (Ab.1): The kernel and cokernel of any morphism exist.

• (Ab.2): For any morphism 𝑓 , 𝑖𝑚( 𝑓 ) = 𝑘𝑒𝑟 (𝑐𝑜𝑘𝑒𝑟 ( 𝑓 )). 1

From this, follows that every bijection is an isomorphism. We now define
sequences and exactness of pairs of morphisms:

We can similarly define additive functors by the structure of morphism𝐻𝑜𝑚(𝐴, 𝐵) →
𝐻𝑜𝑚(𝐹 (𝐴), 𝐹 (𝐵)), and preservation of kernels, cokernels and zero objects.

Infinite sums and products

We now introduce some additional Axioms in order of strength, for existence of
infinite sums and products:

• (Ab.3) Direct sum of any family (𝐴𝑖) (indexed by the set 𝐼) exists within the
category. (Existence of sup)

• (Ab.4) Axiom (Ab.3) is satisfied, and monomorphisms are preserved as such
under finite sums.

• (Ab.5) Axiom (Ab.3) is satisfied, and for the indexed family above we have
(∑𝑖∈𝐼 𝐴𝑖) ∩𝐵 =

∑
𝑖∈𝐼 (𝐴𝑖 ∩𝐵).

• (Ab.6) Axiom (Ab.3) holds for any 𝐴 ∈ 𝐶, and any family (𝐵 𝑗 ) 𝑗∈𝐽 of in-
creasing directed families of 𝐵𝑖 = (𝐵 𝑗

𝑖
)𝑖∈𝐼 of subobjects 𝐵 𝑗 ∈ 𝐴, we have:

⋂
𝑗∈𝐽

(∑︁
𝑖∈𝐼 𝑗

𝐵𝑖𝑗

)
=

∑︁
(𝑖 𝑗 )∈

∏
𝐼 𝑗

(⋂
𝑗∈𝐽
𝐵𝑖𝑖 𝑗

)

We do not use (Ab.6), but it suffices to note that the category 𝒜𝒷 satisfies
all six axioms, and so does the category of modules over a unital ring. We call
Abelian categories those which satisfy (Ab.1) and (Ab.2), AB3 those who satisfy
(Ab.3) as well, and AB5 those satisfying 4th and 5th axioms.

1Toh § 1.4] states this as every morphism of 𝐶𝑜𝑖𝑚(𝑢) → 𝐼𝑚(𝑢) being an Isomorphism. Vakil [21] states this
as every epimorphism being the cokernel of a kernel, and every monomorphism being the kernel of a cokernel. The
conditions are equivalent.
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We now define an important subobject class of categories.
Definition: A generator family in a category 𝐶 is a family of objects (𝑈𝑖)𝑖∈𝐼

such that for two distinct objects 𝐴, 𝐵 ∈ 𝐶 and two morphisms 𝑓 , 𝑔 : 𝐴→ 𝐵 and
ℎ :𝑈𝑖 → 𝐴, we have 𝑓 ◦ ℎ ≠ 𝑔 ◦ ℎ. Equivalently, we can say that if 𝑈 is the direct
sum of (𝑈𝑖)𝑖∈𝐼 , called a generator, any object 𝐴 ∈ 𝐶 is isomorphic to a quotient of
the a direct sum of objects all identical to𝑈.

We see that in a AB3 category, existence of a family of generators ensures the
existence of a generator, as direct sums always exist. An AB5 category which has
a generator has the special name, Grothendieck category. Later we will see that
every such category is a quotient of a 𝑀𝑜𝑑 (𝐴) category.

Example: Consider in 𝒜𝒷 the group Z. Since for 𝑓 , 𝑔 ∈ 𝐻𝑜𝑚(𝐴, 𝐵) there
exists 𝑓 (𝑥) ≠ 𝑔(𝑥) for some 𝑥 ∈ 𝐴, the map 𝑛→ 𝑛 · 𝑥 in 𝐻𝑜𝑚(Z, 𝐴) suffices to
show that Z is a generator.

2.4 Homological algebra in Abelian categories

We now consider exact sequences and certain functorial properties which are
crucial in the next steps of our work.

Definition: (Exactness) We define an exact pair for a pair of consecutive
morphisms 𝑢 and 𝑣 if for the sequence

𝐴
𝑢−→ 𝐵

𝑣−→ 𝐶

if 𝐾𝑒𝑟 (𝑣) = 𝐼𝑚(𝑢). In a category with a zero object, a map

0 −→ 𝐴′
𝑓

−→ 𝐴
𝑔

−→ 𝐴′′ −→ 0

is called a short exact sequence if the map 𝑓 is a monomorphism, and the map 𝑔 is
an epimorphism. Further, a functor ℱ is called left (resp. right) exact if it ℱ( 𝑓 )
(resp. ℱ(𝑔)) is a monomorphism (resp. epimorphism).

We now present two important examples of such functors:
Example: (Hom(A, ·)) In an Abelian category C, the𝐻𝑜𝑚(𝐴, ·) : C×C →𝒜𝒷

is left-exact; in other words, short exact sequences 0 −→ 𝐵′ −→ 𝐵 −→ 𝐵′′ −→ 0 in
C are mapped to 0 −→ 𝐻𝑜𝑚(𝐴, 𝐵′) −→ 𝐻𝑜𝑚(𝐴, 𝐵) −→ 𝐻𝑜𝑚(𝐴, 𝐵′′) in 𝒜𝒷. The
same property holds for 𝐻𝑜𝑚(·, 𝐵), but the groups 𝐻𝑜𝑚(𝐴, 𝐵) and 𝐻𝑜𝑚(𝐵, 𝐴)
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may differ.
Example: (Tensor Product) In the categoryℳℴ𝒹𝑅, the tensor product functor

𝑀 ⊗ · is a right-exact functor; in other words, the short exact sequence of 𝑅modules
0 −→ 𝐵′ −→ 𝐵 −→ 𝐵′′ −→ 0 in ℳℴ𝒹𝑅 is mapped to 𝑀 ⊗ 𝐵′ −→ 𝑀 ⊗ 𝐵 −→
𝑀 ⊗ 𝐵′′ −→ 0 in the same category. Note that since 𝑀 ⊗ 𝐴 � 𝐴 ⊗𝑀 for all 𝑅
modules 𝐴,𝑀 , this relationship is true for · ⊗𝑀 as well.

We now present two important class of objects, namely, injective and projec-
tives. These objects and the associated resolutions become crucial in our setup for
understanding cohomological invariants, which can be thought of as the goal of
homological algebra.

Definition: (Injective and Projective objects) For objects 𝐼, 𝑀,𝑁, 𝑃 in a cate-
gory C with a zero object, we call:

• 𝐼 an injective object if for 𝜑 ∈ 𝐻𝑜𝑚(𝑀,𝑁),𝜓 ∈ 𝐻𝑜𝑚(𝑀, 𝐼) where 𝜑 is an
epimorphism, there exists 𝜃 ∈ 𝐻𝑜𝑚(𝑁, 𝐼) such that 𝜃 ◦𝜑 = 𝜓 for all 𝑀,𝑁 .

• 𝑃 a projective object if for 𝜑𝑜 ∈ 𝐻𝑜𝑚(𝑁,𝑀),𝜓𝑜 ∈ 𝐻𝑜𝑚(𝑃,𝑀) where 𝜓𝑜 is
a monomorphism, there exists 𝜃0 ∈ 𝐻𝑜𝑚(𝑃,𝑁) such that 𝜃𝑜 ◦𝜑𝑜 = 𝜓𝑜 for all
𝑀,𝑁

We now define projective and injective resolutions. Given an object A, an
injective resolution is the exact sequence

0 −→ 𝐴 −→ 𝐼0𝑑−→𝐼1 𝑑−→ . . .

where 𝐼𝑛 is a sequence of injective objects. Similarly, we define a projective
resolution as

· · · 𝑑−→ 𝑃1
𝑑−→ 𝑃0 −→ 𝐴 −→ 0

With 𝑃𝑛 a sequence of Projective objects and 𝑑 surjective.
Remark: For a projective object 𝑃, the functor 𝐻𝑜𝑚(𝑃, ·) is exact; similarly,

for an injective object 𝐼 the functor 𝐻𝑜𝑚(·, 𝐼) is exact.
If the sequence of projective modules terminates after 𝑃𝑛, i.e, 𝑃𝑛+1 = 0, 𝐴 has

projective dimension 𝑛. Injective dimension is defined similarly.
Definition: An additive functor 𝐹 : 𝐶 → 𝐶′ is effaceable if for each 𝐴 ∈ 𝐶,

there exists a monomorphism 𝑢 : 𝐴→𝑀 for some 𝑀 such that 𝐹 (𝑢) = 0. Similarly,
an additive functor is coeffaceable if for some epimorphism 𝑢 : 𝑃→ 𝐴, 𝐹 (𝑢) = 0.
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In an Abelian category𝐶 and additive category𝐶′, consider two (not necessarily
finite) integers 𝑎, 𝑏 with a gap over one. We denote by a 𝛿-functor a covariant
functor from 𝐶 to 𝐶′ in degree 𝑎 < 𝑖 < 𝑏, a system 𝑇 = (𝑇 𝑖) of additive covariant
functors from 𝐶 to 𝐶′; in addition, we take the following morphism

𝜕 : 𝑇 𝑖 (𝐴′′) −→ 𝑇 𝑖+1(𝐴′)

for any exact sequence 0 −→ 𝐴′ −→ 𝐴 −→ 𝐴′′ −→ 0. This gives us an associated
sequence

· · · −→ 𝑇 𝑖 (𝐴′) −→ 𝑇 𝑖 (𝐴) −→ 𝑇 𝑖 (𝐴′′) 𝜕−→ 𝑇 𝑖+1(𝐴′) −→ . . .

which is a complex, that is, product of two consecutive morphisms is zero.
For a homomorphism 𝐴→ 𝐵 preserving the exact sequence,the functors 𝑇 𝑖

and 𝜕 naturally extend to 𝐵.
For the opposite categories of𝐶𝑜 and𝐶′𝑜, the 𝜕-functor becomes the 𝜕*-functor.
Now assume 𝐶′ an Abelian category; then image of exact sequence above is

exact. A cohomological (resp. homological) functor is an exact 𝜕-functor (resp.
𝜕*-functor), defined for all degrees.

We will now present an example for each a cohomology and a homology functor,
associated to the left-exact functor 𝐻𝑜𝑚(𝐴, ·) and right-exact 𝑀 ⊗ · defined above.
These examples turn out to be general enough to support our work in definition of
any (co)homological theory used in the body of this text.

Definition: (Derived functors) We associate to a left (resp. right) exact functor
ℱ(𝐴) a right (resp. left) derivation 𝑅𝑖ℱ(𝐴) (resp. 𝐿𝑖ℱ(𝐴)) to continue the exact
sequences such that the map ℱ(𝐴′′) → 𝑅1

ℱ(𝐴′) is a monomorphism (resp. the
map 𝐿1ℱ(𝐴′′) →ℱ(𝐴′) is an epimorphism).

Example: (𝐻𝑜𝑚 and 𝐸𝑥𝑡) As seen above, the functor 𝐻𝑜𝑚(·, 𝐵) is left-
exact. We associate to it a right derived functor 𝐸𝑥𝑡𝑖 (·, 𝐵) such that the sequence
0 −→ 𝐻𝑜𝑚(𝐴′, 𝐵) −→ 𝐻𝑜𝑚(𝐴, 𝐵) −→ 𝐻𝑜𝑚(𝐴′′, 𝐵) −→ 𝐸𝑥𝑡1(𝐴′, 𝐵) −→ . . . is
exact. Now for the object 𝐴 in this sequence we take the projective resolution
· · · −→ 𝑃𝑛 −→ · · · −→ 𝑃1 −→ 𝑃0 −→ 𝐴 −→ 0 and associate to it the sequence
0 −→ 𝐻𝑜𝑚(𝑃0, 𝐵) −→ 𝐻𝑜𝑚(𝑃1, 𝐵) −→ 𝐻𝑜𝑚(𝑃2, 𝐵) −→ . . . 𝐸𝑥𝑡𝑖 is defined as
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the ith cohomology of this sequence

𝐸𝑥𝑡𝑖 (𝐴, 𝐵) = 𝐻𝑖 (𝐴, 𝐵) = 𝐾𝑒𝑟 (𝐻𝑜𝑚(𝑃𝑖, 𝐵) → 𝐻𝑜𝑚(𝑃𝑖+1, 𝐵))
𝐼𝑚(𝐻𝑜𝑚(𝑃𝑖−1, 𝐵) → 𝐻𝑜𝑚(𝑃𝑖, 𝐵))

.

Alternatively, we can associate to 𝐵 the injective resolution

0 −→ 𝐵 −→ 𝐼0 −→ 𝐼1 −→ . . .

And the associated sequence

0 −→ 𝐻𝑜𝑚(𝐴, 𝐼0) −→ 𝐻𝑜𝑚(𝐴, 𝐼1) −→ 𝐻𝑜𝑚(𝐴, 𝐼2) −→ . . .

And take the ith cohomology

𝐸𝑥𝑡𝑖 (𝐴, 𝐵) = 𝐻𝑖 (𝐴, 𝐵) = 𝐾𝑒𝑟 (𝐻𝑜𝑚(𝐴, 𝐼𝑖) → 𝐻𝑜𝑚(𝐴, 𝐼𝑖+1))
𝐼𝑚(𝐻𝑜𝑚(𝐴, 𝐼𝑖−1) → 𝐻𝑜𝑚(𝐴, 𝐼𝑖))

.

Example: (tensor products and 𝑇𝑜𝑟) We define the operator 𝑇𝑜𝑟𝑖 (𝑀, 𝐴) as
the left derived functor of the tensor product 𝑀 ⊗ · such that the sequence

· · · −→ 𝑇𝑜𝑟1(𝑀, 𝐴′′) −→ 𝑀 ⊗ 𝐴′ −→ 𝑀 ⊗ 𝐴 −→ 𝑀 ⊗ 𝐴′′ −→ 0

is exact, that is, the arrows are epimorphisms. Similar to the construction above, we
can take a projective resolution of 𝐴 · · · −→ 𝑃𝑛 −→ · · · −→ 𝑃1 −→ 𝑃0 −→ 𝐴 −→ 0
and the associated chain complex · · · −→ 𝑀 ⊗ 𝑃𝑛 −→ · · · −→ 𝑀 ⊗ 𝑃1 −→ 𝑀 ⊗
𝑃0 −→ 0 to get the ith homology classes

𝑇𝑜𝑟𝑖 (𝑀, 𝐴) = 𝐻𝑖 (𝑀, 𝐴) =
𝐾𝑒𝑟 (𝑀 ⊗ 𝑃𝑖−1 → 𝑀 ⊗ 𝑃𝑖)
𝐼𝑚(𝑀 ⊗ 𝑃𝑖 → 𝑀 ⊗ 𝑃𝑖+1)

.

Note that for 𝐴,𝑀 modules over a commutative ring 𝑅, we have 𝑇𝑜𝑟𝑖 (𝐴,𝑀) �
𝑇𝑜𝑟𝑖 (𝑀, 𝐴).

2.5 Sheaves and Schemes

We now define sheaves and schemes. The motivation for this unfolds in two steps;
Firstly, we would like a topological approach to ring theory; Second, we would
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like a categorical approach to topology. This two-fold aims will be necessary for
the introduction of etale cohomology, which is the main aim of this chapter.

Sheaves

Here, we first define presheaves as a way of assigning data to each open cover of a
topological space. We then restrict our attention to a certain class which preserves
local data, and agrees on the overlapping covers, as sheaves.

Definition: (Presheaf) For a topological space 𝑋 , a presheaf of sets contravari-
ant functor ℱ : 𝑋 →ℰ𝓃𝓈 such that:

• For any open cover 𝑈 of 𝑋 , there exists a set ℱ(𝑈) called the section of ℱ
over𝑈.

• There exists a map 𝑟𝑒𝑠𝑈
𝑉

: ℱ(𝑈) → ℱ(𝑉) called the restriction map, re-
stricting sheaf from an open cover to an open subcover. In particular, 𝑟𝑒𝑠𝑈

𝑈

amounts to the identity map.

Presheaves of groups or modules can be defined similarly. We now define
sheaves by restriction:

Definition: (Sheaf) A sheaf is a presheaf with the additional conditions:

• For a covering {𝑈𝑖} of the open cover 𝑈 and two sections 𝑠, 𝑡 ∈ ℱ(𝑈), if
𝑠 |𝑈𝑖

= 𝑡 |𝑈𝑖
for all 𝑖, then 𝑠 = 𝑡.

• For a covering {𝑈𝑖}, if two sections agree on all overlaps of the domain,
then there exists a section gluing the two together, such that its restriction to
each cover agrees with the local sections. Following the previous axiom, the
gluing is unique.

We now present examples of presheaves and sheaves:
Example: (Constant sheaf) For a topological space 𝑋 consider the presheaf

assigning a set 𝐶 to all open covers; this is the constant presheaf. Now, to satisfy
the sheaf axioms, we modify this presheaf to assign empty set to the empty cover,
and multiple copies of 𝐶 to non-intersecting covers, such that ℱ(𝑈) = 𝐶𝜋0(𝑈).

Example: The operators 𝐿𝑝 (·) or 𝐶𝑛(·) assigning measurable or n-continuus
function to each open cover of R are examples of sheaves, this time of modules, as
addition and multiplication by real numbers are valid actions in both spaces.
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Affine and Projective Schemes

To a ring 𝐴 with prime ideals 𝑝𝑘 , we assign a topology in which open sets are
complement of prime ideals. By 𝑉 ( 𝑓 ) we shall mean a set of prime ideals, and by
𝐷 ( 𝑓 ) its complement. We denote this topological space 𝑆𝑝𝑒𝑐(𝐴)

1. ∅, 𝐴 ∈ 𝑉 since 𝑉 (0) = 𝑆𝑝𝑒𝑐(𝐴),𝑉 (1) = ∅

2. 𝐸 ⊂ 𝐸′ means 𝑉 (𝐸′) ⊂ 𝑉 (𝐸), hence 𝑉 (∪𝐸𝑖) = ∩𝑉 (𝐸𝑖)

3. 𝑉 (𝐸𝐸′) =𝑉 (𝐸) ∪𝑉 (𝐸′)

And therefore, this space is in fact a valid topology. We shall refer to this topology
as the Zariski topology.

For a ring 𝐴, and the topological space 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), consider the sheaf 𝑂𝑋

which to an open set assigns rational functions of the ring, e.g 𝑓 /𝑔, 𝑓 , 𝑔 ∈ 𝐴, such
that for an open set𝑈 ∈ 𝑋 , the set ℱ(𝑈) does not vanish. We call this the structure
sheaf.

Example: Consider the topological space 𝑋 = C[𝑥]; the structure ring 𝑂𝑋 is
the sheaf assigning to each open cover, non-singular functions on the same cover.

2.6 Sites and Topos

We now provide the definitions for Grothendieck topologies and topoi. We begin
this section by introduction of universes, which we do not make use of elsewhere.
The only problem requiring us to do this is the theoretical incompatibility of usual
set theoretical conception of cardinalities with the notion of topos, as the topos
grows larger than any cardinality within the ZFC.

Definitions: (Universe) a universe is a set such that

• (U.1) For 𝑥 ∈𝒰 and 𝑦 ∈ 𝑥, 𝑦 ∈𝒰

• (U.2) For 𝑥, 𝑦 ∈𝒰, {𝑥, 𝑦} ∈𝒰

• (U.3) For 𝑥 ∈𝒰, 𝑃(𝑥) ∈𝒰

• (U.4) Union of elements 𝑥𝑖 indexed by 𝐼 ∈𝒰 is an element of 𝒰
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Note that since the power set of each element is an element of 𝒰, the cardinality
of 𝒰 is higher than all its members; in particular, the relation 𝒰 ∈ 𝒰 cannot be
verified.

We can define categories for usual categories, such as sets, topological spaces
and Abelian groups inside a universe 𝒰 denoted as 𝒰𝐸𝑛𝑠,𝒰𝐴𝑏, etc.

We call an object 𝒰 small if it is isomorphic to an element of 𝒰. We thus use
words like small groups, small categories, etc.

Definition: (Small category) A category 𝐶 is a 𝒰𝐶𝐴𝑇 if for all 𝑥, 𝑦 ∈ 𝑂𝑏(𝐶),
The set 𝐻𝑜𝑚(𝑥, 𝑦) is 𝒰 small. It is small if 𝑂𝑏(𝐶) is fully inside 𝒰.

The (Pre)sheaf of sets on a category 𝐶 within a universe 𝒰 is the category of
contravariant functors for 𝐶 with values in 𝒰𝐸𝑛𝑠. The category of preshaeves of
sets for a category 𝐶, �̂�𝒰, is a 𝒰𝐶𝐴𝑇 is 𝐶 is small. this does not necessarily hold
if 𝐶 is itself a 𝒰𝐶𝐴𝑇 .

We now define Sieves.
Definition: (Sieve) For an object 𝐴 ∈ 𝐶, a Sieve on A 𝑆 is a set such that for

any 𝑓 : 𝐵→ 𝐴 ∈ 𝑆 and all morphisms 𝑔 : 𝐵′ → 𝐵, the composition 𝑓 ◦𝑔 is in 𝑆.
Example: The minimal sieve on 𝐴 {𝑖𝐴} of only the identity, and the maximal

sieve on 𝐴 of all morphisms 𝐻𝑜𝑚(·, 𝐴) are both valid Sieves. Clearly, any sieve
on 𝐴 lies somewhere between the two. The sieves on an object form a set.

Definition: (Base change) A base change of a sieve from 𝑆 on 𝐴 to 𝑆×𝐴 𝐵 to
𝐵 ∈ 𝑂𝑏(𝐶) is the sieve on 𝐵 defined by the composition of each element in 𝑆 with
a morphism 𝑓 : 𝐵→ 𝐴.

Definition: (Topology) A topology on a category 𝐶 assigns to each 𝐴, 𝐴′ ∈ 𝐶
a set of sieves 𝐽 (𝐴), 𝐽 (𝐴′) such that:

1. The maximal sieve ℎ𝐴 of each objects belongs to 𝐽 (𝐴)

2. Stability under base change For any morphism 𝑓 : 𝐴→ 𝐴′ and elements
𝑆 ∈ 𝐽 (𝐴′), the base change 𝑆′×𝐴′ 𝐴 is an element of 𝐽 (𝐴).

3. Local Character If for every map 𝑓 : 𝐴→ 𝐴′ the base change by 𝑓 of 𝑆 is
an element of 𝐽 (𝐴), then 𝑆 is an element of 𝐽 (𝐴′).

We note the two conditions here:

1. For 𝑆, 𝑆′ ∈ 𝐽 (𝐴), 𝑆∩ 𝑆′ ∈ 𝐽 (𝐴)
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2. If 𝑆 ∈ 𝐽 (𝐴), 𝑆 ⊂ 𝑆′, 𝑆′ ∈ 𝐽 (𝐴).

Definition: (Topos) In a universe U, a U-topos (or a Topos) 𝐸 is a site (e.g,
category with grothendieck topology) which is isomorphic to �̂� category of sheaf
of sets for 𝐶 ∈𝑈.

A topos 𝐸 is a𝑈𝐶𝐴𝑇 satisfying:

1. Finite projective limits are representable

2. Direct sums indexed by an element of𝑈 are representable

3. Equivalence relations in 𝐸 are universally effective

4. 𝐸 admits a generator family indexed by an element of𝑈.

Theorem: (Giraud) The following are equivalent for a𝑈𝐶𝐴𝑇 𝐸 :

1. It is a𝑈 topos (from the definition above)

2. 𝐸 satisfies 1-4 above

3. The 𝑈 sheaf on 𝐸 with canonical topology is representable, and 𝐸 has an
small family of generators

4. There exists a category 𝐶 ∈ 𝑈 and a fully faithful functor 𝑖 : 𝐸 → �̂� of 𝑈
presheaves on 𝐶 admitting a left exact left adjoint.

5. There exists a site 𝐶 ∈ 𝑈 such that projective limits are representable in 𝐶
and the topology on 𝐶 is less fine than the canonical topology, such that 𝐸
is equivalent to the category �̂� of $U$-sheaves of sets on 𝐶

Two topoi 𝐸,𝐸′ are equivalent if there exists a functor 𝑓 such that it commutes
with inductive limits, admits a right adjoint and is continuous (e.g, preserves limits)

Example: (Topos associated to a topological space) Take 𝑋 an small topo-
logical space and 𝜏𝑋 the category of coverings on 𝑋 with the canonical topology.
Consider𝑇𝑜𝑝(𝑋) the topos associated to this space; it is the category of sheaves of
sets on the space 𝑋 , and is equivalent to the etale space (the space of all continuous
morphisms into) 𝑋 .

30



2.7 Etale and l-adic Cohomology

Consider two rings 𝐴, 𝐵 and a ring homomorphism 𝑓 : 𝐴 → 𝐵. We call this
homomorphism flat if For an 𝐴module 𝑀 , the functor 𝑀→𝑀 ⊗𝐴 𝐵 is exact. This
condition is equivalent to 𝐵 being a free 𝐴 algebra. In such case, the morphism
of Schemes 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) is also said to be flat. Similarly, the morphism
is unramified if it is a finite and separable ring extension. A finitely presented flat
and unramified morphism is called an etale morphism.

for two schemes 𝑋,𝑌 and two affine schemes 𝑆𝑝𝑒𝑐(𝐴), 𝑆𝑝𝑒𝑐(𝐴[𝜖]/(𝜖2)) and
maps 𝑓 : 𝑋 → 𝑌 , ℎ : 𝑆𝑝𝑒𝑐(𝐴[𝜖]/(𝜖2)) → 𝑆𝑝𝑒𝑐(𝐴), 𝜑 : 𝑆𝑝𝑒𝑐(𝐴[𝜖]/(𝜖2)) → 𝑋 ,
𝜑′ : 𝑆𝑝𝑒𝑐(𝐵) → 𝑌 , the induced map 𝑔 : 𝑆𝑝𝑒𝑐(𝐴) → 𝑋:

1. exists: 𝑓 is smooth

2. is unique: 𝑓 is unique

3. exists and is unique: 𝑓 is etale.

For an scheme 𝑋 , we define the etale site 𝑋𝑒𝑡 as the category of Schemes 𝑈
with etale morphisms to 𝑋 , and we define a covering a family of etale morphisms
{𝑈𝑖 →𝑈} such that each {𝑈𝑖 →𝑈} are jointly surjective and etale. We refer to the
set of covers of 𝑈 as 𝐶𝑜𝑣(𝑈). A sheaf on the etale site is a functor 𝐹 : 𝑋𝑜𝑒𝑡 → 𝑆𝑒𝑡

such that for 𝐶𝑜𝑣(𝑈) the diagram

𝐹 (𝑈) −→
∏

𝐹 (𝑈𝑖)⇒ 𝐹 (𝑈𝑖 ×𝑈𝑈 𝑗 )

is an equalizer. We note that the etale site 𝑋𝑒𝑡 is naturally the topos associated to
the scheme 𝑋 .

We recall the definition of fundamental groups 𝜋1(𝑋). A fundamental group
is the group classifying the covering spaces of 𝑋 . The finite covering spaces are
thus classified with the profinite completion of the fundamental group.

Theorem: (Riemann’s Existence) Any etale morphism is a finite-to-one cover-
ing space, and conversely every finite-to-one covering space arises this way, from
a unique etale cover.

The construction of the etale fundamental group of an scheme 𝑋 thus follows
the definition

𝜋𝑒𝑡1 (𝑋) = lim
𝑒𝑡𝑎𝑙𝑒 𝑌→𝑋

𝐴𝑢𝑡𝑋 (𝑌 ).
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Consider a normal scheme 𝑋 = ∩𝑆𝑝𝑒𝑐𝑅𝑖. By 𝐾 (𝑋) we denote the field of
fractions of 𝑋 , which given 𝑅𝑖 are normal, is independent of 𝑖. Let 𝐿 be a finite
extension of 𝐾 (𝑋) and �̃�𝑖 the integral closure of 𝑅𝑖 in 𝐿. The maximal unramified
extension is defined as

𝐾 (𝑋)𝑢𝑛𝑟 =
⋃

𝐿 |𝑋𝐿 → 𝑋 is etale.

The fundamental etale group is thus defined as 𝜋𝑒𝑡1 (𝑋) = 𝐺𝑎𝑙 (𝐾 (𝑋)𝑢𝑛𝑟/𝐾 (𝑋)).
Hurewic’s theorem states that the first homology is isomorphic to the abelian-

ization of the fundamental group. From this, we can construct the first cohomology
group as

𝐻1(𝑋, 𝐴) � 𝐻𝑜𝑚(𝐻1(𝑋,Z), 𝐴) � 𝐻𝑜𝑚(𝜋1(𝑋), 𝐴)

We similarly define the first etale cohomology group

𝐻1(𝑋𝑒𝑡 , 𝐴) = 𝐻𝑜𝑚(𝜋𝑒𝑡1 (𝑋), 𝐴)

Note that we work with finite finite 𝐴. Note that for this case, the usual cohomology
and etale cohomology of a simply connected manifold coincide. The higher etale
cohomology classes are similarly defined for the constant sheaves on the etale
sites. We now introduce an important type of etale cohomology, which is the Weil
cohomology intended for introduction in this chapter.

Defining the usual sheaf cohomology on this site, we denote by 𝐻𝑖𝑒𝑡 (𝑋, 𝐴) the
i-th etale cohomology with coefficients in a finite ring 𝐴. For a variety 𝑋 over
a field of characteristic 𝑝 ≠ 𝑙, we define the l-adic cohomology as 𝐻𝑖𝑒𝑡 (𝑋,Z𝑙) :=
lim𝑛𝐻

𝑖
𝑒𝑡 (𝑋,Z/𝑙𝑛Z) and 𝐻𝑖𝑒𝑡 (𝑋,Q𝑙) := (lim𝑛𝐻

𝑖
𝑒𝑡 (𝑋,Z/𝑙𝑛Z)) ⊗Q𝑙

Again, consider 𝑋 over a field 𝑘 . We can always find an scheme �̄� such that 𝑋
has an open immersion into it and the morphism �̄�→ 𝑆𝑝𝑒𝑐(𝑘) is separated, finite
type, and universally closed. We can now define

𝐻𝑖𝑐 (𝑋,Q𝑙) := 𝐻𝑖𝑒𝑡 ( �̄�, 𝑗!Q𝑙)

. Where 𝑗!Q𝑙 is the pushforward sheaf that is 𝑄𝑙 on 𝑋 and zero elsewhere.
Note for the latter, that the compact support – the definition of scheme on

the algebraic closure and completion of the underlying field – means that the
cohomological dimension of the compact support agree with those of the usual de
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Rham cohomology, thus the finiteness of the cohomology classes is guaranteed.
Using properties of sheaves on sites, one can verify the other properties of l-adic
cohomology with compact support as a Weil cohomology theory.
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Chapter 3

Proofs of The Weil
Conjectures

In this chapter, we provide the proofs of the Weil Conjectures 1-3, and a brief
discussion of the Deligne’s proof of the Riemann Hypothesis. The last conjecture
is not proven here since the recreation of the proof requires machinery far beyond
what has been discussed so far. The proofs are done following the first work
of Deligne on the topic, [3], but the formulations more closely follow thosoe in
Milne’s formulation in [18].

3.1 Lefschetz fixed point formula

Here, we provide a proof for the main part of this chapter, the Lefschetz fixed point
formula. In the next section, we deduce Weil 1-3 from this.

First, consider an endomorphism 𝑓 : 𝑋 → 𝑋 . The number of points fixed by
this morphism can be computed as

|𝐹𝑖𝑥( 𝑓 ) | = |Γ 𝑓 ∩Δ|.

For a Variety 𝑋 over the algebraic closure of the finite field �̄�𝑞, denote by 𝑓 the
frobenius endomorphism 𝐹𝑟𝑜𝑏 : 𝑥 ↦→ 𝑥𝑞. It follows from Fermat’s little theorem
that the fixed points of this endomoprhism are the F𝑞 rational points of the variety,
thus |𝐹𝑖𝑥(𝐹𝑟𝑜𝑏) |̄

F𝑞 = |𝐹𝑖𝑥(𝐹𝑟𝑜𝑏) |F𝑞 . We therefore have the following lemma
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For a variety 𝑋 over the finite field F𝑞, we have

|𝑋 (F𝑞) | = |Γ𝐹𝑟𝑜𝑏 ∩Δ|

denoting the number of rational points on 𝑋 .
Consider a map 𝜑 : 𝑋 → 𝑌 ; this map induces a homomorphism of rings 𝜑∗ :

𝐻∗(𝑌 ) → 𝐻∗(𝑋). Given that this map is a homomorphism of finite dimensional
vector spaces, it has a matrix representation; We denote by 𝑇𝑟 (𝜑|𝐻∗(𝑋)) the trace
of this matrix.

Here we prove that this map is equal to the graph Γ𝜑.
Lemma: For any regular map 𝜑 and 𝑦 ∈ 𝐻∗(𝑌 ), and 𝑝, 𝑞 : 𝑋×𝑋→ 𝑋 projection

maps, we have
𝑝∗(𝑐𝑙𝑋×𝑌 (Γ𝜑) ∪ 𝑞∗𝑦)) = 𝜑∗(𝑦)

Proof: We compute

𝑝∗(𝑐𝑙𝑋×𝑌 (Γ𝜑) ∪ 𝑞∗𝑦) = 𝑝∗((1, 𝜑)∗∪ 𝑞∗𝑦)
= 𝑝∗(1, 𝜑)∗(1∪ (1, 𝜑)∗𝑞∗𝑦)

= (𝑝 ◦ (1, 𝜑))∗(1∪ (𝑞 ◦ (1, 𝜑)∗𝑦))
= 𝑖𝑑∗(1𝑋 ∪𝜑∗𝑦) = 𝜑∗(𝑦) (3.1)

Lemma: Let (𝑒𝑖) and ( 𝑓𝑖) be the bases of 𝐻∗(𝑋) dual relative to the cup
product, so that

𝑒𝑖 ∪ 𝑓 𝑗 = 𝛿𝑖 𝑗𝑒
2𝑑

. We have the following:

𝑐𝑙𝑋×𝑋 (Γ𝜑) =
∑︁

𝜑∗(𝑒𝑖) ⊗ 𝑓𝑖

. This follows the isomorphism induced by the Künneth form and the previous
lemma.

We can now prove the Lefschetz fixed point formula for cohomology:
Theorem: (Lefschetz fixed point) Let 𝜑 : 𝑋 → 𝑋 be a regular endomorphism
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of X, a complete non-singular variety over an algebraically closed field 𝐾 . Then

(Δ ·Γ𝜑) =
2𝑑𝑖𝑚(𝑋)∑︁
𝑟=0

(−1)𝑟𝑇𝑟 (𝜑 |𝐻𝑟 (𝑋,Q𝑙)).

Proof: Let 𝑒𝑟
𝑖

be a basis for 𝐻𝑟 , and 𝑓 2𝑛−𝑟
𝑖

the dual for 𝐻2𝑛−𝑟 induced by
Poincare duality. We then have

𝑐𝑙 (Γ𝜑) =
∑︁

𝜑∗(𝑒𝑟𝑖 ) ⊗ 𝑓 2𝑑−𝑟
𝑖 , and

𝑐𝑙 (Δ) =
∑︁

𝑒𝑟𝑖 ⊗ 𝑓 2𝑑−𝑟
𝑖 =

∑︁
(−1)𝑟 (2𝑑−𝑟) 𝑓 2𝑑−𝑟

𝑖 ⊗ 𝑒𝑖 =
∑︁

(−1)𝑟 𝑓 2𝑑−𝑟
𝑖 ⊗ 𝑒𝑟𝑖

taking the product of the sides we get

𝑐𝑙𝑋×𝑋 (Γ𝜑 ·Δ) =
∑︁

(−1)𝜑∗(𝑒𝑟𝑖 ) 𝑓 2𝑑−𝑟
𝑖 ⊗ 𝑒2𝑑 =

∑︁
𝑟

𝑇𝑟 (𝜑∗ |𝐻𝑟) (𝑒2𝑑 ⊗ 𝑒2𝑑).

Sending each element of the basis to 1, we get the desired formula.
We can now have our desired version of this as a corollary.
Corollary: We have the following formula for the rational points on a variety

over a finite field:

|𝑋 (F𝑞) | =
2𝑑𝑖𝑚(𝑋)∑︁
𝑖=0

(−1)𝑖𝑇𝑟 (𝐹𝑟𝑜𝑏 |𝐻𝑖 (𝑋)).

Remark: Consider the case 𝑓 = 𝑖𝑑𝑋 , the case of the identity morphism for
a smooth projective variety. In this case, the Lefschetz trace formula yields an
alternating sum of the dimensions of the cohomology classes of the variety, which
is the generalized Euler characteristic. In particular for curves, we see that

𝜒(𝐶) =
∑︁
𝑟

(−1)𝑑𝑖𝑚(𝐻𝑟 (𝐶)) = 2−2𝑔
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3.2 Proof of the Weil Conjectures 1-3

We now provide a proof of the Weil conjectures besides the Riemann Hypothesis.
First, recall the definition of the zeta function as

𝑍 (𝑋,𝑇) = exp
( ∞∑︁
𝑛=0

|𝑋 (F𝑞𝑛) |
𝑇𝑛

𝑛

)
which we after logarithmic differentiation and multiplication by 𝑇 becomes

𝑇
𝑑

𝑑𝑇
log(𝑍 (𝑋,𝑇)) =

∞∑︁
𝑛=0

|𝑋 (F𝑞𝑛) |𝑇𝑛.

We have the following identity from linear algebra for an endomorphism 𝐹 of
space 𝑉

𝑇
𝑑

𝑑𝑇
log(𝑑𝑒𝑡 (1−𝐹𝑇 |𝑉))−1) =

∞∑︁
𝑛=0
𝑇𝑟 (𝐹𝑛 |𝑉)𝑇𝑛

Which, coupled with the Lefschetz fixed point formula, yields the identity

𝑍 (𝑋,𝑇) =
2𝑑𝑖𝑚(𝑋)∏
𝑖=0

𝑑𝑒𝑡 (1−𝐹𝑟𝑜𝑏∗𝑞𝑇 |𝐻𝑖 (𝑋)) (−1)𝑖+1

Where 1 denotes the identity matrix.
Rationality and Betti numbers are clear; the determinant yields a polynomial in

degree of 𝐻𝑖 (𝑋), and since no Weil cohomology class is infinite, the polynomial
remains rational. For the functional equation, notice that the Poincare duality gives
a non-degenerate pairing between $H2n-i and 𝐻𝑖. Given that the image of 𝐹𝑟𝑜𝑏𝑞
in 𝐻2𝑛−𝑖 is a multiplication by 𝑞𝑛, we have

𝑑𝑒𝑡 (1−𝐹𝑟𝑜𝑏∗𝑞𝑇 |𝐻𝑖) = 𝑞𝑛𝑏𝑖𝑇 𝑏𝑖𝑑𝑒𝑡 (1−
1
𝑞𝑛𝑇

𝐹𝑟𝑜𝑏−1
𝑞 |𝐻2𝑑−𝑖)

where 𝑏𝑖 are the Betti numbers. Taking the product over all cohomology classes
with regards to the alternating grading of the Künneth map, we get

𝑍 (𝑋,𝑞−𝑛𝑇−1) = ±𝑞𝑛𝜒(𝑋)𝑇 𝜒(𝑋)𝑍 (𝑋,𝑇)
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as desired; the sign here relates to the instances of 𝑞𝑛/2 as an eigenvalue of the
Frobenius action.

This concludes the proofs of the Weil conjectures 1-3. For the Riemann
Hypothesis, we need further discussion of the eigenvalues of the Frobenius.
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Chapter 4

Application: Elliptic Curve
Arithmetic

In this chapter, we will show an application of the cohomological work done thus
far. Much of this material has been sent to appear in Kazakh Mathematical Journal,
and an abstract of it has been presented in the IMMM conference, April 2025.

4.1 Elliptic Curves

We now briefly introduce the idea of elliptic curves and explain the application
of the thus far given context. Our main aim here is to apply the methods and
techniques given so far to compute the first etale cohomology class of a family of
elliptic curves.

We begin by defining elliptic functions, from which we can define elliptic
curves and show the genus 1 property.

Definition: an elliptic function 𝑓 is a doubly periodic function with the periods
𝑤1,𝑤2 ∈ C such that

𝑓 (𝑧) = 𝑓 (𝑧+𝑚𝑤1 +𝑛𝑤2) for 𝑚,𝑛 ∈ Z.

We define the period lattice Λ as such linear combinations of 𝑤1,𝑤2.

We now recall a theorem from complex analysis, introducing constraints on the
types of elliptic function:
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Theorem: (Liouville)

1. A holomorphic, entire function on the complex plane is constant.

2. The sum of residues of 𝑓 in the domain C/Λ is zero.

3. Every value of 𝑓 has the same frequency in C/Λ

Proof:

1. take the domain C/Λ. If the function 𝑓 is holomorphic then it is bounded
in this domain. Since this implies the function being bounded on the entire
complex plane, the function is constant.

2. take the parallelogram [0,𝑤1,𝑤1 +𝑤2,𝑤2] which defines the domain C/Λ.
Due to the periodic nature of 𝑓 , the integral over opposing sides of this
parallelogram is zero, hence the sum of residues is zero.

3. take the function 𝑔(𝑧) = 1
𝑓 (𝑧)+ 𝑓 (𝑧0) ; given that this function must also be

elliptic, the number of occurrences of any 𝑓 (𝑧0) must be equal, otherwise
𝑔(𝑧) violates the second theorem.

We now move on to one of the main classes of elliptic functions, the Weierstrass
elliptic functions.

Definition: The Weierstrass elliptic function ℘(𝑧) is defined as

℘(𝑧) = 1
𝑧2 +

∑︁
𝜆∈Λ−0

1
𝑧2 −𝜆2 −

1
𝜆2 .

The derivative of this function is

℘′(𝑧) = −
∑︁
𝜆∈Λ

1
(𝑧−𝜆)3

thus it satisfies the following differential equation:

℘′(𝑧)2 = 4℘(𝑧)3 −𝑔2℘(𝑧) −𝑔3.

with coefficients 𝑔2 = 60𝐺4(𝑤1,𝑤2) and 𝑔3 = 140𝐺6(𝑤1,𝑤2), where 𝐺4,𝐺6 are
the Eisenstein series defined in the accompanying text.
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This differential equation gives us our main object of study in this text, elliptic
curves. Rewriting this relation as

𝑦2 = 4𝑥3 − 𝑎𝑥− 𝑏

we get the Weierstrass normal form of an elliptic curve1, which by this mapping is
isomorphic to the torus C/Λ. In general, elliptic curves are smooth and projective
algebraic curves of genus one.

Now, using the parameter 𝜏 = 𝑤1
𝑤2

and modularity of Eisenstein series’, we get
the mapping H/𝑆𝐿2(Z) → Λ. From the Weierstrass function, we got the map
C/Λ→ 𝐸 . We can complete this route by constructing a map 𝐸 → H/𝑆𝐿2(Z).

4.2 The Group Structure on 𝐸 (Q)
Given any cubic curve, a key feature is that a line through two distinct rational points
on the curve intersects it at a third rational point. This property is the foundation
of the group law on elliptic curves. Specifically, if 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2)
are two rational points on the curve 𝐸 (Q), their sum, denoted 𝑃+𝑄 = 𝑅, is a third
rational point 𝑅 = (𝑥3, 𝑦3) that lies on the curve as well. This operation is both
geometric (based on the intersection of a line) and algebraic (as part of the elliptic
curve’s group structure).

A notable feature of the general Weierstrass equation for elliptic curves is that it
is symmetric with respect to the 𝑦-axis. That is, for any point (𝑥0, 𝑦0) on the curve,
the point (𝑥0,−𝑦0) is also a rational point. This symmetry helps define the concept
of the identity element in the group. The point O, called the point at infinity, serves
as the identity element. Geometrically, O is the point where the curve intersects
the line at infinity. This intersection occurs when the curve is homogenized by
introducing a projective coordinate 𝑍 , such that the curve equation becomes:

𝑌2𝑍 = 𝑋3 + 𝑎𝑋𝑍2 + 𝑏𝑍3.

When we set 𝑍 = 0, the intersection at infinity corresponds to the point where
𝑋3 = 0, confirming that the curve intersects the line at infinity in exactly three
points, one of which is the identity point O.

1in characteristics 𝑝 ≠ 2,3 as the curve needs to be smooth
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From this construction, the rational points on the elliptic curve, together with the
point O, form an Abelian group under the operation of point addition. The addition
of two rational points is governed by the geometric construction of intersecting
lines (or tangents) on the curve, and this group structure is a central feature of
elliptic curves.

A fundamental result in the study of elliptic curves is Mordell’s theorem,
which states that the group of rational points on an elliptic curve, 𝐸 (Q), is finitely
generated. That is, any rational point 𝑄 on the curve can be expressed as a finite
sum of independent points 𝑃,𝑃1, 𝑃2, . . . , 𝑃𝑟 , where 𝑃1, 𝑃2, . . . , 𝑃𝑟 form a basis for
the free part of the group, and 𝑃 is a point of finite order. In other words, there
exists a set of independent rational points 𝑃1, 𝑃2, . . . , 𝑃𝑟 , such that every other
rational point on the curve can be written as an integer linear combination of these
points:

𝑄 = 𝑏𝑃+ 𝑎1𝑃1 + 𝑎2𝑃2 + · · · + 𝑎𝑟𝑃𝑟 ,

where 𝑎1, 𝑎2, . . . , 𝑎𝑟 ∈ Z, 𝑏 ∈ Z/𝑛Z. The rank 𝑟 of the curve is the number of
independent points in this basis, giving it the structure of the free group

𝐸 (Q) ≃ 𝐸𝑇𝑜𝑟𝑠 ⊕Z𝑟

Where 𝐸𝑇𝑜𝑟𝑠 is the finite part. In this work, we have set 𝐸𝑇𝑜𝑟𝑠 ≃ Z/2Z, hense the
name 2-torsion.

4.3 L-series Associated to an Elliptic Curve

We now provide the definition for the L-function and the zeta function of an
elliptic curve. Firstly, from the isomorphism given above 𝐸 ≃ C/Λ, it follows that
the cohomology classes for an elliptic curve are

𝐻i
c(𝐸,Ql)


𝑖 = 0 Q𝑙

𝑖 = 1 Q2
𝑙

𝑖 = 2 Q𝑙
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from which it follows that the structure of the zeta function attached to an elliptic
curve is of the form

𝑍 (𝐸,𝑇) = 𝑃1(𝑇)
(1−𝑇) (1− 𝑞𝑇)

where 𝑑𝑒𝑔(𝑃1(𝑇)) = 2. To compute this factor exactly, we will use the following
auxiliary construction.

For a curve 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, we have the discriminant Δ(𝐸) = −16(4𝑎3 −
27𝑏2). For odd primes not dividing Δ, we define a reduction of the Elliptic curve
as

�̃�𝑝 : 𝑦2 = 𝑥3 + �̃�𝑥 + �̃�

to be the reduction of the curve modulo 𝑝. Counting pairs (𝑥, 𝑦) modulo 𝑝 along
with the point at infinity we get the result

�̃� (F𝑝) = 𝑝 +1− 𝜖𝑝

with 𝜖𝑝 ≤ 2√𝑝. We now construct the L-function of E as the product

𝐿 (𝐸, 𝑠) =
∏
𝑝 prime

(1−
𝜖𝑝

𝑝𝑠
+ 1
𝑝2𝑠−1 )

−1.

Expanding the L-function as an infinite series we get the final result

𝐿 (𝐸, 𝑠) =
∞∑︁
𝑛=1

𝜖𝑛

𝑛𝑠
.

We note that 𝜖𝑛 =
∏

𝑝 |𝑛 𝜖𝑝, and that 𝜖𝑝𝑘+1 = 𝜖𝑝𝜖𝑝𝑘 − 𝑝𝜖𝑝𝑘−1.
We can define the zeta function of the elliptic curve from this as

𝑍𝑝 (𝐸, 𝑡) =
1− 𝑎𝑝𝑡 + 𝑝𝑡2

(1− 𝑡) (1− 𝑝𝑡) .

Putting 𝑡 = 𝑝−𝑠, we get

𝑍 (𝐸, 𝑠) =
1− 𝑎𝑝𝑝−𝑠 + 𝑝1−2𝑠

(1− 𝑝−𝑠) (1− 𝑝𝑠−1)
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which we can rewrite as

𝑍 (𝐸, 𝑡) = 𝜁 (𝑠)𝜁 (𝑠−1)𝐿 (𝐸, 𝑠)−1

As a consequence of the modularity theorem, the L-function of an elliptic curve
arises from a modular form, as a result, there exists a holomorphic extension for
the function 𝐿 (𝐸, 𝑠) as

𝜉 (𝐸, 𝑠) = 𝑁 𝑠/2
𝐸

(2𝜋)−𝑠Γ(𝑠)𝐿 (𝐸, 𝑠)

with the reflection formula

𝜉 (𝐸, 𝑠) = ±𝜉 (𝐸,2− 𝑠).

We note that the pole for an elliptic L-function is situated at 𝑠 = 3
2 . The constant 𝑁

is an important constant related to the curve called the conductor.
The Birch-Swinnerton Dyer conjecture states that the order of vanishing of the

L-function at 𝑠 = 1 is equal to the rank of the elliptic curve. Further, it states that
the first non-zero Taylor coefficient of the L-function at 𝑠 = 1 is

𝐿1 =
|X(𝐸) |Ω𝐸𝑅𝐸𝑐𝐸

|𝐸𝑇𝑜𝑟𝑠 |2

where Ω𝐸 , 𝑅𝐸 , 𝑐𝐸 are constants, 𝐸𝑇𝑜𝑟𝑠 is the torsion group of the curve and X(𝐸)
is the Tate-Shafarevich group of the elliptic curve, the definition of which is given
in what follows in the chapter.

4.4 2-Torsion Families and the Rank Problem

Considering an elliptic surface

𝐸𝐴,𝐵 : 𝑦2 = 𝑥3 + 𝐴(𝑡)𝑥 +𝐵(𝑡) for 𝐴, 𝐵 ∈ Q[𝑡], 𝑑𝑒𝑔(𝐴, 𝐵) ≤ 2

we investigate the rank of its fibers at particular values of 𝑡. Generally, it is
known that for a rational elliptic surface with generic rank 𝑟𝐸 , the subset of fibers
with ranks 𝑟𝐸 + {1,2,3} is not thin. One might ask further questions about the
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average ranks of fibers and the method of computing the generators of the weak
Mordell-Weil group. This task is carried out by computing the Selmer group.

We begin by marking families of elliptic curves by a 2-torsion point ( 𝑟
ℎ2 ,0) and

their isogenous family of curves. We consider the families

𝐸 : 𝑦2 = 𝑥3 + ℎ2𝑡𝑥− 𝑟𝑡 − 𝑟3

With ℎ = 1, e.g, integral torsion points, and translating the torsion to (0,0) we get
the family

𝐸 : 𝑌2 = 𝑋3 +2𝑟𝑋2 + (𝑡2 + 𝑟2)𝑋

and the natural isogeny at the point (𝑟,0).
The main objective of this work is to demonstrate the following:
The upper bound of the Selmer rank for a family of elliptic curves with a

rational 2-Torsion up to naive height 𝑋 is log log𝑋
In recent years, several authors — most notably Klagsbrun et. al. [14],

[13] — have studied the average behavior and distribution of Selmer ranks in
families of elliptic curves, often using Tamagawa ratios by the matrix construction
described by Monsky in appendix of [11]. In this work, we propose a direct and
elementary argument showing that the upper bound of the Selmer ranks in a family
of elliptic curves with rational 2-torsion grows like log 𝑙𝑜𝑔𝑋 , relying on local
Galois cohomology and the probabilistic distribution of twists and local images,
as laid out in [7]. Another approach to construction of Selmer groups is the graph
theoretical method described in [5], [6] in which methods of graph theory are used
to describe the Selmer groups. The same method is used in [16] over Q(𝑖). A
notable similarity in most of these works is the focus on an special case of this
problem for curves

𝐸 : 𝑦2 = 𝑥3 −𝑛𝑥

either focusing on the case where 𝑛 is an square, or general case as in [16]. Our
aim is for higher generality in this case, but we note that setting 𝑟 = 0 gives the
same curve here.
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4.5 Selmer Groups

For a variety 𝐴 and a number field 𝑘 with a set of places 𝜈, we denote by 𝐴(𝑘𝜈)
the set of points on 𝐴 in the 𝜈-completion of 𝑘 . Let

𝐻𝑖 (𝑘, 𝐴) := 𝐻𝑖 (𝐺𝑎𝑙 ( �̄�/𝑘), 𝐴/𝑘)

denote the Galois cohomology classes of A, in particular,

𝐴(𝑘) = 𝐻0(𝑘, 𝐴)

is the set of 𝑘-rational points on 𝐴.
The Tate-Shafavevich group is defined as

X𝐴/𝑘 = 𝑘𝑒𝑟 (𝐻1(𝑘, 𝐴) →
∏
𝜈

𝐻1(𝑘𝜈, 𝐴))

such that the non-trivial elements correspond to homogeneous spaces (also called
𝑘-torsors) measuring the failure of Hasse principal. Conjecturally, this value is
finite. This is only known to hold for the class of elliptic curves with a zero of order
at most one at 𝐿 (𝐸/Q,1), or curves of rank ≤ 1 given that the BSD conjecture is
proven for all such curves.

For an isogeny of elliptic curves, we have the following sequence

0 −→ 𝐸 (𝑘) [𝜑] −→ 𝐸 ( �̄�) −→ 𝐸′( �̄�) −→ 0

where 𝐸 (𝑘) [𝜑] is the kernel of isogeny. Applying Galois cohomology gives us

0 −→ 𝐸 (𝑘) [𝜑] −→ 𝐸 (𝑘) −→ 𝐸′(𝑘) −→

𝐻1(𝑘, 𝐸 [𝜑]) −→ 𝐻1(𝑘, 𝐸) −→ 𝐻1(𝑘, 𝐸′) −→ . . .

Now, setting 𝜑 = 𝑚, the multiplication by 𝑚 map and rewriting the sequence
we get

0 −→ 𝐸 (𝑘)/𝑚𝐸 (𝑘) 𝛿−→ 𝐻1(𝑘, 𝐸 [𝑚]) −→ 𝐻1(𝑘, 𝐸) [𝑚] −→ 0

48



which we can restrict at each place 𝜈 to get

0 −→ 𝐸 (𝑘𝜈)/𝑚𝐸 (𝑘𝜈)
𝛿𝜈−→ 𝐻1(𝑘𝜈, 𝐸 [𝑚]) −→ 𝐻1(𝑘𝜈, 𝐸) [𝑚] −→ 0.

Notice that given the finitude of 𝐸 [𝜑], the local Galois cohomology groups
𝐻𝑖 (𝑘𝜈, 𝐸 [𝜑]) coinside with the respective etale cohomology groups.

The Selmer group is defined as the kernel

𝑆𝑒𝑙𝑚 (𝐸/𝑘) = 𝐾𝑒𝑟
(
𝐻1(𝑘, 𝐸 [𝑚]) → 𝐻1(𝑘𝜈, 𝐸) [𝑚]/𝐻1

𝑚 (𝑘𝜈, 𝐸)
)

for each prime, where

𝐻1
𝑚 (𝑘𝜈, 𝐸) = 𝛿𝜈 (𝐸′(𝑘𝜈)/𝑚(𝐸 (𝑘𝜈))),

of the mapping of m-torsion of the first Galois cohomology group to its restriction
in all places. In this way, we get the exact sequence

0 −→ 𝐸 (𝑘)/𝑚𝐸 (𝑘) −→ 𝑆𝑒𝑙𝑚 (𝐸/𝑘) −→X𝐸/𝑘 [𝑚] −→ 0.

In [7], an algorithm is given for computing the connecting homomorphisms 𝛿𝑝 and
𝛿2. These images are used coupled with the definition

𝑆𝑒𝑙𝜑(𝐸/Q) = {𝑥 ∈ 𝐻1(Q, 𝐸 [𝜑]) | 𝑟𝑒𝑠𝑝 (𝑥) ∈ 𝐼𝑚(𝛿𝑝) for all places 𝑝} =
⋂

𝐼𝑚(𝛿𝑝)

to describe the full Selmer groups for each elliptic curve. A full description of the
Selmer group gives an upper bound on the rank of the elliptic curves as we have

𝑟𝑎𝑛𝑘 (𝐸) = 𝑑𝑖𝑚𝐹2𝑆𝑒𝑙
𝜑(𝐸/Q) + 𝑑𝑖𝑚𝐹2𝑆𝑒𝑙

𝜑′ (𝐸′/Q)
− 𝑑𝑖𝑚𝐹2X(𝐸/Q) [𝜑] − 𝑑𝑖𝑚𝐹2X(𝐸′/Q) [𝜑′] −2

from which it follows that

𝑟𝑎𝑛𝑘 (𝐸) ≤ 𝑑𝑖𝑚𝐹2𝑆𝑒𝑙
2(𝐸/Q) + 𝑑𝑖𝑚𝐹2𝑆𝑒𝑙

2(𝐸′/Q) −2

relating the rank of elliptic curve to the dimension of the 2-Selmer group spanned
as an F2 vector space. In particular, if the Tate-Shafarevich group is trivial, the

49



two sides will be equal. We refer to the right side of (1) as the Selmer rank of the
curve 𝐸 . In the next section. The algorithm given in [7] is reproduced, which we
will use as the basis for our argument.

4.6 Prior Results

The problem of understanding the distribution of Selmer ranks in large families
of elliptic curves has attracted significant attention in recent years. Bhargava
and Shankar have shown in a series of foundational works that, in large enough
families of elliptic curves ordered by height, the average size of 2-Selmer groups
is bounded. Specifically, in [2], they establish that the average size of the 2-Selmer
group across all elliptic curves over Q is exactly 3, and in [1], for families with
a marked 2-torsion point, the average rises to 6. These results suggest that, for
a majority of curves, the Mordell–Weil rank is either 0 or 1, though they do not
resolve the Birch and Swinnerton-Dyer conjecture in individual cases.

The behavior in more constrained families—particularly those with prescribed
torsion structures—is subtler. In [22], Xiong investigates a specific one-parameter
family 𝐸𝑛 : 𝑦2 = 𝑥3−𝑛3, showing that the average size of the 2-Selmer group grows
slowly, approximately as

√︃
1
2 log log𝑋 as 𝑛 ≤ 𝑋 . A more general result appears

in [14], where Klagsbrun and Lemke-Oliver demonstrate that the 2-Selmer rank
in families of quadratic twists of curves with a marked 2-torsion point can grow
arbitrarily large. Their proof relies on studying the Tamagawa ratio between a
curve 𝐸 and its 2-isogenous partner 𝐸′,

𝑇 (𝐸/𝐸′) =
|Sel𝜑(𝐸) |
|Sel𝜑′ (𝐸′) | ,

and evaluating its 2-adic valuation across quadratic twists 𝐸 𝜒. The growth is
controlled by local cohomological invariants at primes dividing 2, the discriminants
Δ,Δ′, and infinity:

ord2𝑇 (𝐸 𝜒/𝐸′𝜒) = 𝑔(𝜒) +
∑︁

𝜈 |2,Δ,∞

(
dimF2 𝐻

1
𝜑(𝐾𝜈, 𝐸 [𝜑]) −1

)
,

where 𝑔(𝜒) involves average Legendre symbols over ramified primes.
In a follow-up work [15], they show that the distribution of Selmer ranks across
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such families of twists has mean 0 and variance loglog𝑋 , and they deduce that
arbitrarily high Selmer ranks occur infinitely often. These results, however, apply
specifically to twist families and depend crucially on analyzing the variation of the
Tamagawa ratio.

The present work differs in both setting and method. We consider a static
family of elliptic curves over Q with a rational point of order 2 at the origin, not
twists. We demonstrate that even without extension to quadratic fields, the Selmer
rank can exhibit unbounded growth, and that the average rank exhibits logarithmic
fluctuation. While our local analysis uses similar cohomological terms—such
as the local image under the Kummer map 𝛿𝜈—our method is based on direct
reduction and descent calculations adapted from Goto [7], rather than Tamagawa
ratios or isogeny-based arguments.

Moreover, while [14] suggests a
√︁

log𝑋 average size of individual Selmer
groups in such families, no published proof of this claim appears in their later
work [13], which instead focuses on Cohen–Lenstra-type distributions for Selmer
group structures given fixed rank. As such, the present work contributes a distinct
perspective on the problem by re-analyzing the growth of 2-Selmer ranks directly
over Q, using concrete local-global computations without relying on isogeny de-
compositions or twist families.

4.7 Algorithm for Computation of the Selmer Group

We now reproduce the algorithm given in [7] to compute the Selmer groups.
We note here that the images of the connecting homomorphisms 𝛿𝑝 and 𝛿′𝑝 are
orthogonal with the (, )𝑝 Hilbert symbol, such that for all 𝑥 ∈ 𝛿𝑝, 𝑦 ∈ 𝛿′𝑝 we have
(𝑥, 𝑦)𝑝 = 1.

In the following section, we have the curve

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥2 +𝐵𝑥

with values
𝑎 =𝑂𝑟𝑑𝑝 (𝐴), 𝑏 =𝑂𝑟𝑑𝑝 (𝐵), 𝑑 =𝑂𝑟𝑑𝑝 (𝐴2 −4𝐵)

and ( 𝑎
𝑝
) denoting the Legendre symbol, and 𝑢 is a non-square modulo 𝑝. We have

the following cases
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1. 𝑏 = 0:

(a) 2|𝑑 and (−2𝐴
𝑝

) = −1 → 𝐼𝑚(𝛿𝑝) = Z×𝑝Q×2
𝑝 /Q×2

𝑝

(b) otherwise 𝐼𝑚(𝛿𝑝) = {1}

2. 𝑏 ≠ 0:

(a) 𝑎 = 0:

i. 2|𝑏 and ( 𝐴
𝑝
) = −1 → 𝐼𝑚(𝛿𝑝) = Z×𝑝Q×2

𝑝 /Q×2
𝑝 .

ii. otherwise 𝐼𝑚(𝛿𝑝) = Q×
𝑝/Q×2

𝑝 .

(b) 𝑎 ≠ 0:

i. 𝑏 = 1 → 𝐼𝑚(𝛿𝑝) =< 𝐵 >.

ii. 𝑏 = 2, 𝑎 = 1: let 𝐴 = 𝑝𝐴′, 𝐵 = 𝑝2𝐵′, and 𝛼 = ( 𝐴
′2 −4𝐵′

𝑝
), 𝛽 =

( 𝐴
′+2

√
𝐵′

𝑝
) with

√
𝐵′ denoting the 𝑝 adic square root:

A. 𝛼 = 0 → 𝐼𝑚(𝛿′𝑝) =< 2𝐴, 𝐴′2−4𝐵 >.
B. 𝛼 = −1 → 𝐼𝑚(𝛿𝑝) =< 𝐵 >.
C. 𝐵′ is not an square in Q𝑝 → 𝐼𝑚(𝛿𝑝) = Q×

𝑝/Q×2
𝑝 .

D. 𝛽 = 1 → 𝐼𝑚(𝛿′𝑝) =< 𝑝 >.
E. 𝛽 = 1 → 𝐼𝑚(𝛿′𝑝) =< 𝑝𝑢 >.

(c) 𝑏 = 2, 𝑎 ≥ 2:

i. −𝐵 is not an square in Q𝑝 → 𝐼𝑚(𝛿𝑝) =< 𝐵 >.
ii. 𝑝 ≡ 3 mod 4 → 𝐼𝑚(𝛿𝑝) = Q×

𝑝/Q×2
𝑝 .

iii. 𝑝 ≡ 1 mod 4 → 𝐼𝑚(𝛿𝑝) =< 𝑝 >,< 𝑝𝑢 > depending on whether the
quartic character of −𝐵 in 𝑝 is 1 or −1.

(d) 𝑏 ≥ 3, 𝑎 = 1 → 𝐼𝑚(𝛿𝑝) =< 𝐵 >.

(e) 𝑏 = 3, 𝑎 ≥ 2 → 𝐼𝑚(𝛿𝑝) =< −𝐴, 𝐵 >.

The algorithm concludes here. For 𝛿2, the algorithm is similar, but produces,
on average, larger groups. The algorithm can be simplified by making use of
quartic characters, as done in [16].
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4.8 Main Theorem

Let 𝐹 (𝑋) denote the family of elliptic curves of bounded height:

𝐹 (𝑋) = {𝐸𝐴,𝐵 : ℎ(𝐸𝐴,𝐵) < 𝑋}

where the height function is defined by

ℎ(𝐸) = max(3𝐴3,27𝐵2).

We are concerned with the behavior of the 2-Selmer rank 𝑆(𝐸) for 𝐸 ∈ 𝐹 (𝑋).
Recall that the algorithms described in the previous section define local connecting
homomorphisms 𝛿𝑝 and their duals 𝛿′𝑝, which are orthogonal. These maps capture
the image of 𝐸 (Q𝑝)/2𝐸 (Q𝑝) in 𝐻1(Q𝑝, 𝐸 [2]), and their interaction across all
primes controls the dimension of the 2-Selmer group.

Now consider a curve of the form:

𝐸 : 𝑦2 = 𝑥3 + 𝑝𝐴′𝑥2 + 𝑝2𝐵′𝑥,

which is a quadratic twist of the curve

𝐸𝑝 : 𝑦2 = 𝑥3 + 𝐴′𝑥2 +𝐵′𝑥.

This twist relation implies that the local images at 𝑝 can be heuristically related,
and in particular, the twisting by 𝑝 modifies the Selmer rank by introducing or
removing local obstructions.

We model the expected size of the image of each local connecting homomor-
phism 𝛿𝑝 by:

E[|𝛿𝑝 |] ≈
log𝑋∑︁
𝑛=1

𝑛

𝑝𝑛
≈ 𝑝

(𝑝−1)2 ∼ 1
𝑝
,

where the last approximation holds in the limit as 𝑋 →∞. That is, the expected
contribution to the Selmer rank from each prime 𝑝 behaves like 1/𝑝.

Summing over all primes 𝑝 ≤ 𝑋 , the total expected Selmer rank satisfies:

E[𝑆(𝐹 (𝑋))] ≈
∑︁
𝑝≤𝑋

1
𝑝
∼ log log𝑋.
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Possible overlaps (i.e., dependencies between local conditions at different primes)
contribute correction terms of order

∑
𝑝≠𝑞

1
𝑝𝑞

, which is convergent and thus does
not affect the asymptotic growth. Therefore, we obtain:

E[𝑆(𝐹 (𝑋))] ∼ log log𝑋,

which completes the proof of Theorem (1).
This heuristic matches the behavior observed in the works of Klagsbrun–Lemke

Oliver [14], [15] and Klagsbrun–Kane [13], who study the distribution of 2-Selmer
ranks via Tamagawa ratios and show that the average and variance of Selmer ranks
grow like loglog𝑋 .

4.9 Conclusion and Prospects

This result shows the growth of Selmer ranks for this family of elliptic curves.
From the equation (2) we see that this result, together with an study of the growth
of Tate-Shafarevich group could lead to the solution of the following open problem

Problem 1. Does there exist 𝐵 ∈ Z such that for all elliptic curves 𝐸 over Q,
one has 𝑟𝑎𝑛𝑘 (Q) ≤ 𝐵?

We note that, in light of results such as [2] and [1], the vast majority of
elliptic curve families exhibit bounded average Selmer ranks, making them unlikely
sources of counterexamples to bounded rank conjectures. By contrast, families
with unbounded Selmer rank—such as the one examined here—become natural
candidates for detecting potential violations. In this context, one of two conclusions
must hold: either the Mordell–Weil rank becomes unbounded in such families, or
the Tate–Shafarevich group (𝐸) absorbs the excess growth. The latter scenario
raises a distinct and unresolved problem of its own, as no general algorithm exists for
computing (𝐸), and its behavior in large families overQ remains poorly understood.

The general consensus is in favor of this, for example, as in [19]. We see that in
this case the boundedness of the rank would imply that the Tate-Shafarevich group
also grows without bounds. There are methods for studying this problem, as in
[20], but it remains for future undertakings to apply these to this particular family
strictly over Q.
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Conclusion

The dissertation thus presented has been structured in two strata. Firstly, a founda-
tion of modern developments in algebraic geometry has been lain out, and second,
an application has been presented to show the use of the tools and techniques
developed for a problem in arithmetic geometry.

The first part was devoted to the development of the formalism necessary
for understanding the modern, categorical interpretation of algebraic geometry.
After presenting the problem, that of Weil conjectures, we dedicated a chapter to
build up all that was required to address them; categories, sheaves and schemes,
cohomological apparata and number theoretical aspects of the finite fields were
presented to meet this end. The emphasis on the abstract machinery was quite
essential; without a coherent outline of the tools and terminology, not just the
Weil conjectures but the application too would remain inaccessible. While not
a comprehensive guide, a framework has been drawn and adopted to address the
main points of modern geometric language.

The second part was the application of these methodology and machinery to
a concrete arithmetical problem, that of Selmer groups and the ranks of elliptic
curves. Building on the cohomological framework of the former part, we defined
certain auxiliary concepts for the ranks of elliptic curves, applied methods of Galois
and etale cohomology, and draw upper bounds for the ranks of Selmer groups and
thus demonstrated the use of abstract algebraic concepts to yield concrete results
in the theory of arithmetic. While we did not address the analytic theory of the
L-functions and the Birch-Swinnerton-Dyer conjecture, as those are far beyond the
scope of this dissertation, this application provides a first step into this connection
of algebraic and analytic phenomena.

There are many routes that can be addressed from the path outlined in this
dissertation; One immediate step is studying the finiteness of Tate-Shafarevich
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groups, a problem which remains open even in the narrowest of cases. As the
methods of application of the Selmer ranks suggests, however, in our case this
could be an attainable goal. The presented homological techniques naturally
yielded a method to approach the Selmer groups, and the same methods could be
applied again for the Tate-Shafarevich groups, when a more sophisticated approach
to the global fields has been established. A more ambitious aim is to connect the
algebraic constructions of this work to the analytical theory of the zeta functions.
It was briefly mentioned how the L-functions for an elliptic curve contain algebraic
data in their central values. It was far beyond the scope of this work, but it remains
as a future path to connect these bridges for the solution of the Birch-Swinnerton-
Dyer conjecture. This analytic goal would be first of many steps to fully grasp the
analytical ’meaning’ of what was presented, with the final aim of the Riemann zeta
function. Many topics remain to be discussed before that, Galois representations,
more cohomological frameworks, and analytic number theory, to name a few; this
work however was aimed at being a first step, which now concludes.

This thesis is thus a first step; a point of departure into deeper ends of number
theory and geometry. A foundation was presented, the application was shown, and
thus further explorations may proceed.
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1960-1969. 2

[10] Grothendieck A. Sur quelques points d’algèbre homologique, Tohoku Math.
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